Length-Weight Relationship Modeling Applications in Aquatic Species Biomass Estimation Methods
DOI:
https://doi.org/10.71222/9nmep839Keywords:
length-weight relationships, biomass estimation, aquatic species, allometric modeling, morphometric analysis, ecosystem monitoringAbstract
Length-weight relationships represent fundamental biometric tools in aquatic ecology, providing essential methods for biomass estimation across diverse marine and freshwater species. These allometric relationships enable researchers to convert easily measured morphometric parameters into biomass values, facilitating population assessments and ecosystem monitoring. Contemporary approaches integrate traditional morphometric measurements with advanced technologies including metabarcoding, machine learning, and in situ imaging systems. The application of length-weight models spans multiple taxonomic groups, from zooplankton communities to large crustaceans and fish populations. Recent developments emphasize spatiotemporal modeling approaches that account for environmental variability and seasonal dynamics in aquatic systems. Machine learning algorithms have enhanced biomass estimation accuracy by incorporating multiple morphometric variables beyond simple length measurements. Metabarcoding techniques now enable species-specific biomass calculations from genetic material, revolutionizing plankton community assessments. The integration of these methodologies addresses critical challenges in aquatic biodiversity monitoring and fisheries management. This review synthesizes current applications of length-weight relationship modeling, examining methodological advances in biomass estimation techniques across aquatic ecosystems. The analysis encompasses traditional regression approaches, contemporary technological innovations, and emerging computational methods that improve estimation precision. Understanding these relationships remains crucial for sustainable fisheries management, ecosystem health assessment, and biodiversity conservation in aquatic environments.
References
1. D. Ku, Y.-J. Chae, Y. Choi, C. W. Ji, Y.-S. Park, and I.-S. Kwak et al., "Optimal Method for Biomass Estimation in a Cladoceran Species, Daphnia Magna (Straus, 1820): Evaluating Length–Weight Regression Equations and Deriving Estimation Equations Using Body Length, Width and Lateral Area," Sustainability, vol. 14, no. 15, p. 9216, 2022, doi: 10.3390/su14159216.
2. M. J. Jungbluth, K. M. Hanson, P. H. Lenz, H. E. Robinson, and E. Goetze, "Species‐specific biomass estimation from gene copy number in metazoan plankton," Limnol. Oceanogr. Methods, vol. 20, no. 6, pp. 305–319, 2022, doi: 10.1002/lom3.10487.
3. E. A. Ershova, O. S. Wangensteen, R. Descoteaux, C Barth-Jensen, and K Præbel, "Metabarcoding as a quantitative tool for estimating biodiversity and relative biomass of marine zooplankton," ICES J. Mar. Sci., vol. 78, no. 9, pp. 3342–3355, 2021, doi: 10.1093/icesjms/fsab171.
4. Q. Wang, Z. Z. Wang, H. Shan, C. Z. Ding, D. Wu, and M. Jiang et al., "The construction of migration crab passageways and the carapace length-weight relationships of migratory Eriocheir sinensis H. Milne Edwards, 1853 (Decapoda: Brachyura: Varunidae) in the Yangtze River, China," J. Crustacean Biol., vol. 45, no. 1, 2025, doi: 10.1093/jcbiol/ruaf012.
5. L. Drago, T. Panaïotis, J.-O. Irisson, M. Babin, T. Biard, and F. Carlotti et al., "Global Distribution of Zooplankton Biomass Estimated by In Situ Imaging and Machine Learning," Front. Mar. Sci., vol. 9, 2022, doi: 10.3389/fmars.2022.894372.
6. Y. Yin, J. A. Sameoto, D. M. Keith, and Joanna Mills Flemming, "Improving estimation of length–weight relationships using spatiotemporal models," Can. J. Fish. Aquat. Sci., vol. 79, no. 11, pp. 1896–1910, 2022, doi: 10.1139/cjfas-2021-0317.
7. O. T. Julius, F. Zangaro, R. Massaro, F. Marcucci, A. Cazzetta, and F. Sangiorgio et al., "Assessing Fish Populations Through Length–Weight Relationships and Condition Factors in Three Lakes of Nigeria," Biology, vol. 14, no. 6, p. 612, 2025, doi: 10.3390/biology14060612.
8. B. Musingi, N. Kitaka, G. Ogondo, T. Muasya, L. Mahianyu, and D. Musingi, "Evaluation of modelling in fish length-weight relationships: The current trends," Int. J. Fish. Aquat. Stud., vol. 8, no. 5, pp. 289–293, 2020, doi: 10.22271/fish.2020.v8.i5d.2335.
9. L. Bavčević, S. Petrović, V. Karamarko, U. Luzzana, and T. Klanjšček, "Estimating fish energy content and gain from length and wet weight," Ecol. Modell., vol. 436, p. 109280, 2020, doi: 10.1016/j.ecolmodel.2020.109280.
10. T. H. Leach, L. A. Winslow, F. W. Acker, J. A. Bloomfield, C. W. Boylen, and P. A. Bukaveckas et al., "Long-term dataset on aquatic responses to concurrent climate change and recovery from acidification," Sci. Data, vol. 5, no. 1, p. 180059, 2018, doi: 10.1038/sdata.2018.59.
11. C. Llopis-Belenguer, I. Blasco-Costa, and J. A. Balbuena, "Evaluation of three methods for biomass estimation in small inver-tebrates, using three large disparate parasite species as model organisms," Sci. Rep., vol. 8, no. 1, 2018, doi: 10.1038/s41598-018-22304-x.
12. A. Skolte, C. W. Schoenebeck, and A. W. Hafs, "Effects of a Shallow Lake Condition Shift on Habitat, Zooplankton, and Yellow Perch Dynamics," N. Am. J. Fish. Manage., vol. 42, no. 3, pp. 659–667, 2021, doi: 10.1002/nafm.10720.
13. Kélig Mahé, Jérome Baudrier, A. Larivain, Solène Telliez, Romain Elleboode, and E. Bultel et al., "Morphometric Relationships between Length and Weight of 109 Fish Species in the Caribbean Sea (French West Indies)," Animals, vol. 13, no. 24, pp. 3852–3852, 2023, doi: 10.3390/ani13243852.
14. Q. Wang, J. X. Yang, G. Q. Zhou, Y. A. Zhu, and H. Shan, "Length–weight and chelae length–width relationships of the crayfish Procambarus clarkii under culture conditions," J. Freshwater Ecol., vol. 26, no. 2, pp. 287–294, 2011, doi: 10.1080/02705060.2011.564380.
15. F. R. McEnnulty, C. H. Davies, A. O. Armstrong, N. Atkins, F. Coman, and L. Clementson et al., "A database of zooplankton biomass in Australian marine waters," Sci. Data, vol. 7, no. 1, p. 297, 2020, doi: 10.1038/s41597-020-00625-9.
16. S. M. Wilson, M. P. Corsi, D. H. Brandt, and E. J. Stark, "The response of Daphnia to nutrient additions and kokanee abundance in Dworshak Reservoir, Idaho," Can. J. Fish. Aquat. Sci., vol. 78, no. 11, pp. 1677–1688, 2021, doi: 10.1139/cjfas-2020-0427.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Omar Siddiqui (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.