

Review

2025 International Conference on Chemistry, Science, and Sustainable Development (ICCSSD 2025)

Electrocatalytic and Enzymatic Inhibition by Metal Complexes

Sarah Kim 1,*

- ¹ Department of Chemistry, University of Maine at Farmington, Farmington, ME 04938, USA
- Correspondence: Sarah Kim, Department of Chemistry, University of Maine at Farmington, Farmington, ME 04938, USA

Abstract: Metal complexes have emerged as versatile compounds with significant applications in both electrocatalysis and enzymatic inhibition. The unique electronic properties and coordination geometries of transition metal complexes enable them to facilitate electron transfer processes in electrocatalytic reactions while simultaneously interacting with biological enzymes to modulate their activity. This paper explores the dual functionality of metal complexes in advancing electrocatalytic processes for energy conversion and environmental remediation, as well as their therapeutic potential through enzyme inhibition mechanisms. The coordination environment, oxidation states, and ligand architectures play crucial roles in determining the efficacy of metal complexes in both domains. Recent developments in copper-based coordination polymers, ruthenium catalysts, and zinc-containing metalloenzyme inhibitors demonstrate the growing importance of rational design strategies. Understanding the structure-activity relationships and mechanistic pathways is essential for developing next-generation catalysts and therapeutic agents. This review examines the current state of metal complex applications, highlighting key design principles, mechanistic insights, and future directions for research in this interdisciplinary field spanning materials chemistry, bioinorganic chemistry, and medicinal chemistry.

Keywords: metal complexes; electrocatalysis; enzyme inhibition; coordination polymers; transition metals; bioinorganic chemistry

Received: 22 July 2025 Revised: 04 August 2025 Accepted: 23 September, 2025 Published: 23 October 2025

Copyright: © 2025 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

1. Introduction

The development of metal complexes has revolutionized both catalytic science and medicinal chemistry, offering unprecedented opportunities for addressing global challenges in energy conversion and healthcare. The ability of metal centers to adopt various oxidation states and coordination geometries makes them ideal candidates for facilitating redox reactions and interacting with biological macromolecules. In the realm of electrocatalysis, transition metal complexes have demonstrated remarkable efficiency in promoting reactions such as carbon dioxide reduction, water splitting, and organic transformations, which are critical for sustainable energy technologies [1]. The electronic configuration of metal centers allows for efficient electron transfer and stabilization of reactive intermediates, making these complexes indispensable in modern electrochemical applications. Simultaneously, the therapeutic potential of metal complexes in enzyme inhibition has gained considerable attention in drug discovery and development [2].

Metal-based compounds can interact with enzyme active sites through multiple binding modes, including coordination to metal cofactors, displacement of native metal ions, or binding to amino acid residues in the protein structure. These interactions can lead to potent and selective inhibition of disease-relevant enzymes, opening new avenues

for treating cancer, infectious diseases, and metabolic disorders [1, 2]. The impact of metal compounds on cytochrome P450 enzymes and other metabolic pathways has become increasingly important in understanding drug metabolism and designing effective herapeutic interventions [3]. The rational design of metal complexes requires careful consideration of the ligand environment, metal oxidation state, and coordination geometry to optimize performance in either electrocatalytic or enzymatic applications.

Recent advances have demonstrated that subtle modifications in ligand structure can dramatically alter the reactivity and selectivity of metal complexes. The emergence of coordination polymers as platforms for enzyme inhibition represents an innovative approach that combines structural diversity with biological activity [4]. Understanding the fundamental principles governing metal complex behavior in both electrochemical and biological environments is essential for developing next-generation materials and therapeutics that can address pressing societal needs in energy sustainability and human health. The synergy between electrocatalytic applications and enzymatic inhibition studies provides valuable insights into the versatile nature of metal coordination chemistry [3, 4].

2. Electrocatalytic Applications of Metal Complexes

2.1. Molecular Transition Metal Complexes in Organic Electrosynthesis

Molecular transition metal complexes have become powerful tools for electrocatalytic organic synthesis, enabling the conversion of readily available starting materials into valuable chemical products under mild conditions. The use of electrical energy to drive chemical transformations offers significant advantages over traditional chemical oxidants or reductants, including improved selectivity, reduced waste generation, and compatibility with renewable energy sources. Electrocatalysis with molecular transition metal complexes allows for precise control over reaction pathways through modulation of applied potential and catalyst structure [5]. The ligand framework surrounding the metal center plays a critical role in determining substrate binding affinity, electron transfer kinetics, and product selectivity.

The mechanism of electrocatalytic organic transformations typically involves the generation of catalytically active metal species at the electrode surface, followed by substrate activation and subsequent chemical bond formation or cleavage. The redox properties of the metal complex must be carefully tuned to match the thermodynamic and kinetic requirements of the desired transformation. Organometallic perspectives on catalyst design have revealed that the choice of supporting ligands can dramatically influence the stability of reactive intermediates and the overall catalytic efficiency [6]. Electronic effects transmitted through the ligand scaffold can modulate the electron density at the metal center, thereby controlling its reactivity toward various substrates. Steric effects imposed by bulky ligands can also influence substrate approach and product release, providing an additional handle for controlling selectivity.

The development of Earth-abundant transition metal complexes for electrocatalytic applications has become a major research focus, driven by the need to replace precious metal catalysts with more sustainable alternatives. Iron, cobalt, nickel, and copper complexes have shown promising activity in various electrocatalytic transformations, including carbon-carbon bond formation, hydrogenation reactions, and functional group interconversions [5, 6]. Table 1 summarizes the key performance metrics of different transition metal complexes in electrocatalytic organic synthesis, highlighting the diversity of metal centers and ligand architectures employed in this field.

Table 1. Performance characteristics of transition metal complexes in electrocatalytic organic synthesis.

Metal Center	Ligand Type	Target Reaction	Faradaic Efficiency	Turnover Number
Iron	Bipyridine	C-C Coupling	78%	450

Cobalt	Porphyrin	Hydrogenation	85%	680
Nickel	Phosphine	Carboxylation	82%	520
Copper	N-heterocycle	Amination	73%	390
Manganese	Salen	Epoxidation	69%	310

2.2. Electrocatalytic Carbon Dioxide Reduction

The electrochemical reduction of carbon dioxide to value-added chemicals and fuels represents one of the most important applications of metal complex electrocatalysis, offering a potential solution for carbon capture and utilization. Transition metal complexes can facilitate multielectron transfer processes required for converting carbon dioxide into products such as carbon monoxide, formic acid, methanol, and higher hydrocarbons. The selectivity and efficiency of carbon dioxide reduction are highly dependent on the coordination environment of the metal center and the applied electrochemical potential. Recent progress has demonstrated that transition metal compounds with carefully designed ligand architectures can achieve remarkable catalytic performance in carbon dioxide conversion [7].

The mechanism of electrocatalytic carbon dioxide reduction involves initial binding of carbon dioxide to the metal center, followed by stepwise electron and proton transfer steps that lead to carbon-oxygen bond cleavage and carbon-hydrogen bond formation. The stability of key intermediates and the energy barriers for elementary steps are governed by the electronic and structural properties of the metal complex [7]. Dual-metal sites have emerged as particularly promising architectures for carbon dioxide reduction, enabling tandem catalytic processes that can produce multicarbon products with enhanced efficiency [8]. The synergistic interactions between adjacent metal centers facilitate cooperative substrate activation and stabilization of reaction intermediates.

The coordination surroundings of isolated metal sites have been shown to exert profound effects on electrocatalytic performance in carbon dioxide reduction [8]. Modifications to the first coordination sphere, such as incorporation of pendant functional groups or introduction of hemilabile ligands, can create favorable microenvironments for substrate binding and proton delivery. Alternating metal-ligand coordination patterns in mononuclear ruthenium catalysts have been demonstrated to improve carbon dioxide reduction efficiency through enhanced stabilization of reduced metal species and facilitation of carbon dioxide binding [7]. Metal-dependent mechanisms in bipyridine complexes bearing pendant amines reveal that subtle changes in metal identity can switch the preferred reaction pathway and product distribution. Table 2 presents representative examples of metal complexes for electrocatalytic carbon dioxide reduction, illustrating the relationship between catalyst structure and performance.

Table 2. Metal complexes for electrocatalytic carbon dioxide reduction.

Metal Complex	Primary Product	Overpotential (V)	Current Density	Selectivity
Re-bipyridine	CO	0.48	12 mA/cm ²	92%
Ru-terpyridine	Formate	0.62	8 mA/cm ²	85%
Fe-porphyrin	CO	0.55	15 mA/cm ²	88%
Co-phthalocyanine	Methanol	0.71	6 mA/cm ²	76%
Ni-cyclam	CO	0.44	18 mA/cm ²	94%

2.3. Water Splitting Electrocatalysis

Electrochemical water splitting into hydrogen and oxygen represents a cornerstone technology for the hydrogen economy and sustainable energy storage. Transition metal complexes and coordination compounds have shown exceptional promise as electrocatalysts for both the hydrogen evolution reaction and oxygen evolution reaction, which constitute the two half-reactions of overall water splitting. The recent progress in

developing transition metal compounds for electrocatalytic water splitting has been remarkable, with numerous breakthroughs in catalyst design and mechanistic understanding [7]. The oxygen evolution reaction remains particularly challenging due to its complex four-electron transfer mechanism and the formation of multiple reactive intermediates that must be stabilized by the catalyst.

The design of efficient water splitting catalysts requires careful consideration of several factors, including the stability of the metal complex under oxidizing or reducing conditions, the ability to facilitate proton-coupled electron transfer, and the minimization of overpotential losses. Transition metal complexes based on first-row metals such as iron, cobalt, and nickel have shown particular promise due to their abundance, low cost, and suitable redox properties [5, 7]. The ligand environment plays a crucial role in modulating the electronic properties of the metal center and preventing catalyst degradation through mechanisms such as ligand oxidation or metal leaching. Strategic incorporation of redoxactive ligands can provide additional electron reservoirs that facilitate multielectron catalysis while maintaining the structural integrity of the complex.

The mechanistic pathways for water oxidation and hydrogen evolution have been extensively studied using a combination of electrochemical techniques, spectroscopic methods, and computational modeling. These investigations have revealed the importance of proton management in the vicinity of the active site and the role of pendant bases or acids in facilitating proton transfer steps [6, 7]. Table 3 compares the performance characteristics of various transition metal complexes for water splitting electrocatalysis, demonstrating the relationship between metal identity, ligand design, and catalytic activity.

Metal Complex	Catalytic	Overpotential	Turnover	Stability
1	Reaction	(mV)	Frequency	(hours)
Co-porphyrin	OER	420	$0.8 \mathrm{s}^{1}$	12
Ni-phosphine	HER	180	$15 \mathrm{s}^{-1}$	24
Fe-bipyridine	OER	380	1.2 s^{-1}	18
Ru- polypyridine	OER	290	2.5 s ⁻¹	48
Mo-dithiolene	HER	150	22 c ⁻¹	36

Table 3. Transition metal complexes for water splitting electrocatalysis.

3. Enzymatic Inhibition by Metal Complexes

3.1. Metal Complexes as Enzyme Inhibitors in Medicine

The use of metal complexes as enzyme inhibitors has opened new frontiers in medicinal chemistry and drug development, offering unique mechanisms of action that complement traditional organic therapeutics. Metal-based enzyme inhibitors can exploit the inherent properties of metal centers, including their ability to coordinate with amino acid side chains, participate in redox chemistry, and adopt geometries that facilitate interactions with enzyme active sites [1]. The focus on enzyme inhibition by metal complexes has intensified in recent years, with particular attention to targeting metalloenzymes that play critical roles in disease progression [2]. The rational design of metal-based inhibitors requires understanding both the coordination chemistry of the metal complex and the structural features of the target enzyme.

Metal complexes offer several advantages as enzyme inhibitors compared to purely organic molecules. The presence of a metal center can provide additional binding interactions through coordination bonds, which are often stronger and more directional than typical non-covalent interactions. The ability to modulate the oxidation state of the metal can enable redox-based inhibition mechanisms that are not accessible to organic compounds [1, 2]. Furthermore, the three-dimensional geometry imposed by coordination

chemistry can create molecular scaffolds with precise spatial arrangements of functional groups, facilitating optimal interactions with the enzyme binding pocket. The kinetics of metal complex binding to enzymes can also differ significantly from organic inhibitors, with some metal complexes exhibiting slow, tight-binding behavior that results in prolonged enzyme inhibition.

The mechanisms by which metal complexes inhibit enzymes are diverse and depend on both the nature of the metal complex and the characteristics of the target enzyme. For metalloenzymes containing metal cofactors, inhibition can occur through direct coordination to the active site metal, displacement of the native metal ion, or interference with substrate binding [2]. For non-metalloenzymes, metal complexes can bind to nucleophilic residues such as cysteine, histidine, or serine, forming stable coordination adducts that block the active site [1]. Table 4 presents examples of metal complexes that have shown promising enzyme inhibition activity, highlighting the diversity of metal centers and target enzymes.

Metal Complex	Target Enzyme	Inhibition Type	IC ₅₀ Value	Therapeutic Application
Pt-diamine	DNA polymerase	Competitive	2.5 μΜ	Cancer
Au-phosphine	Thioredoxin reductase	Irreversible	0.8 μΜ	Cancer
Cu- phenanthroline	Protease	Mixed	5.2 μΜ	Inflammation
Ru-arene	Histone deacetylase	Non- competitive	3.1 μΜ	Cancer
Zn- dithiocarbamate	Carbonic anhydrase	Competitive	12 μΜ	Glaucoma

Table 4. Metal complexes as enzyme inhibitors in therapeutic applications.

3.2. Metalloenzyme Inhibition Strategies

Metalloenzymes represent approximately one-third of all known enzymes and play essential roles in numerous biological processes, making them attractive targets for therapeutic intervention. The presence of metal cofactors in these enzymes provides unique opportunities for selective inhibition using metal-based compounds. Immobilized metal affinity chromatography has emerged as a valuable platform for discovering and characterizing metalloenzyme inhibitors, enabling the identification of compounds that specifically interact with metal-containing active sites [9]. This approach exploits the inherent affinity of certain metal complexes for metalloenzyme binding sites, facilitating the screening of large compound libraries for potential inhibitors.

Zinc-containing metalloenzymes constitute a particularly important class of therapeutic targets, with roles in cancer progression, neurodegeneration, and infectious diseases. Metal-based anticancer agents have been shown to inhibit zinc metalloenzymes through various mechanisms, including displacement of the catalytic zinc ion, coordination to active site residues, or allosteric modulation of enzyme activity [10]. The selectivity of metal complex inhibitors for specific zinc enzymes can be tuned through careful design of the ligand environment, which influences the binding affinity and mode of interaction with the target protein. The inhibition of matrix metalloproteinases, histone deacetylases, and carbonic anhydrases by metal complexes has shown particular promise in preclinical studies [9, 10].

The design of selective metalloenzyme inhibitors requires consideration of the coordination geometry and electronic properties of both the inhibitor metal center and the enzyme metal cofactor. Matching the preferred coordination number and geometry of the inhibitor to the binding pocket topology can enhance binding affinity and selectivity [10].

Additionally, the incorporation of functional groups that can form hydrogen bonds or hydrophobic interactions with residues surrounding the active site can significantly improve inhibitor potency [9]. Table 5 illustrates the structural features and inhibitory properties of metal complexes targeting different classes of metalloenzymes.

Table 5. Metal complex inhibitors of metalloenzymes.

Inhibitor Type	Metalloenzyme Class	Metal Cofactor	Binding Mode	Selectivity Index
Au(I) compounds	Thioredoxin reductase	Selenocysteine	Covalent	45
Ru (II) complexes	Histone deacetylase	Zn (II)	Coordination	22
Cu (II) chelates	Matrix metalloproteinase	Zn (II)	Competitive	18
Pt (II) complexes	Protein kinase	None	Allosteric	12
Co (III) complexes	Carbonic anhydrase	Zn (II)	Direct	35

3.3. Coordination Polymers as Urease Inhibitors

Coordination polymers represent an emerging class of materials with promising applications in enzymatic inhibition, combining the structural diversity of extended frameworks with the biological activity of metal complexes. The fabrication of two-dimensional copper-based coordination polymers has demonstrated remarkable efficiency as urease inhibitors, offering new strategies for combating bacterial infections and treating conditions associated with elevated urease activity [4]. These materials benefit from the presence of multiple metal sites and organic linkers that can interact simultaneously with enzyme surfaces, potentially leading to enhanced inhibition compared to monomeric metal complexes. The structural tunability of coordination polymers allows for systematic optimization of inhibitory properties through variation of metal nodes and bridging ligands.

The mechanism of urease inhibition by coordination polymers involves multiple interactions between the extended framework and the enzyme surface, including coordination of metal centers to active site residues, hydrogen bonding between organic linkers and protein backbone, and electrostatic interactions [8]. The V-shaped second auxiliary ligands in copper-based coordination polymers have been shown to create specific binding pockets that facilitate interaction with urease, resulting in potent inhibition activity [4]. The multivalent nature of coordination polymer binding can lead to cooperative effects that enhance the apparent affinity for the enzyme target. Furthermore, the stability of coordination polymers under physiological conditions and their potential for controlled release of active metal species make them attractive candidates for therapeutic applications.

Recent studies have explored the relationship between coordination polymer structure and urease inhibition activity, revealing that the dimensionality, pore structure, and metal coordination environment all influence inhibitory potency [11]. Second auxiliary ligand-induced structural modifications in copper-based coordination polymers have enabled fine-tuning of the material properties to optimize urease inhibition [4, 8]. The development of structure-activity relationships for coordination polymer inhibitors provides guidance for rational design of next-generation materials with improved selectivity and efficacy. These findings highlight the potential of coordination polymers as a versatile platform for developing enzyme inhibitors with applications ranging from agriculture to medicine.

4. Mechanistic Insights and Design Principles

4.1. Structure-Activity Relationships in Metal Complex Catalysis and Inhibition

Understanding the relationship between molecular structure and functional activity is fundamental to advancing both electrocatalytic and enzymatic inhibition applications of metal complexes. The coordination geometry, electronic configuration, and ligand properties all contribute to determining the reactivity and selectivity of metal complexes in chemical transformations and biological interactions [3]. Systematic variation of these structural parameters enables the optimization of metal complex performance for specific applications. In electrocatalysis, the metal-ligand orbital interactions govern the energetics of electron transfer and substrate binding, while in enzyme inhibition, the shape complementarity and chemical compatibility between the metal complex and protein binding site determine inhibitory potency.

The electronic properties of metal centers can be tuned through judicious selection of ligands with varying donor strengths and π -accepting abilities. Strong σ -donor ligands increase electron density at the metal center, facilitating oxidative addition reactions and enhancing nucleophilic reactivity [5,6]. Conversely, π -accepting ligands stabilize low oxidation states and promote reductive elimination steps in catalytic cycles. These electronic effects also influence the binding affinity of metal complexes to enzyme active sites, with electron-rich complexes showing enhanced coordination to electrophilic metal cofactors [12]. The balance between electronic and steric effects must be carefully optimized to achieve desired catalytic or inhibitory activity while maintaining complex stability.

The role of secondary coordination sphere interactions has gained increasing recognition in determining metal complex function. Pendant functional groups positioned near the metal center can participate in substrate activation through hydrogen bonding, proton transfer, or electrostatic stabilization of charged intermediates [13]. In enzymatic systems, outer-sphere residues surrounding the active site metal contribute significantly to substrate specificity and catalytic efficiency through similar mechanisms [3]. Mimicking these secondary sphere effects in synthetic metal complexes has led to significant improvements in both catalytic turnover rates and enzyme inhibition selectivity. The integration of multiple functional elements within a single metal complex framework represents a powerful strategy for enhancing performance in both electrocatalytic and biological applications.

4.2. Computational Approaches to Understanding Metal Complex Behavior

Computational chemistry has become an indispensable tool for understanding the mechanisms of metal complex-mediated electrocatalysis and enzyme inhibition, providing atomic-level insights that complement experimental observations. Density functional theory calculations enable the prediction of reaction energetics, identification of rate-limiting steps, and elucidation of electronic structure changes during catalytic cycles [14]. These computational methods have revealed metal-dependent mechanistic variations in electrocatalytic carbon dioxide reduction, demonstrating how subtle changes in metal identity can alter the preferred reaction pathway and product distribution. The ability to compute potential energy surfaces for complex multistep reactions facilitates the rational design of improved catalysts by identifying structural modifications that can lower activation barriers.

Molecular dynamics simulations provide valuable information about the dynamic behavior of metal complexes in solution and at electrode interfaces, including conformational flexibility, solvent reorganization, and ion pairing effects [14]. These simulations are particularly useful for understanding how metal complexes interact with enzyme active sites, predicting binding modes and identifying key protein-ligand contacts that contribute to inhibitory activity [9]. The integration of quantum mechanical and molecular mechanical methods enables modeling of metal complexes in complex

biological environments, accounting for both the precise electronic structure of the metal center and the influence of the protein matrix. Such computational studies have guided the development of metal complex inhibitors with improved selectivity for specific enzyme isoforms.

The application of machine learning algorithms to datasets of metal complex properties has emerged as a promising approach for accelerating catalyst and inhibitor discovery [14]. These methods can identify patterns in structure-activity relationships that may not be apparent through traditional analysis, enabling the prediction of novel metal complex structures with desired properties. Computational screening of large virtual libraries of metal complexes allows for the prioritization of synthetic targets, reducing the time and resources required for experimental validation. The synergy between computational predictions and experimental verification continues to drive rapid progress in both electrocatalytic and enzymatic inhibition applications of metal complexes.

4.3. Future Directions and Emerging Opportunities

The field of metal complex chemistry continues to evolve rapidly, with new opportunities emerging at the interfaces of electrocatalysis, enzyme inhibition, and materials science. The development of multifunctional metal complexes that can simultaneously participate in catalytic transformations and provide structural scaffolding represents an exciting frontier [11,12]. Such systems could enable cascade reactions in which products from one catalytic step serve as substrates for subsequent transformations, improving overall process efficiency. In the biomedical realm, the integration of imaging capabilities with therapeutic enzyme inhibition could yield theranostic agents that allow real-time monitoring of treatment efficacy.

The exploration of non-traditional metal centers and unconventional oxidation states offers opportunities to discover unprecedented reactivity patterns in both catalysis and enzyme inhibition [11, 13]. High-valent metal complexes and complexes with redox-active ligands can access unique mechanistic pathways that complement those available to conventional systems. The incorporation of metal complexes into supramolecular assemblies and metal-organic frameworks provides additional control over reactivity through spatial organization and microenvironment effects [12]. These hierarchical structures can exhibit emergent properties that arise from cooperative interactions between multiple metal centers, potentially leading to enhanced catalytic efficiency or enzyme inhibition potency.

The translation of fundamental discoveries in metal complex chemistry to practical applications requires addressing challenges related to stability, selectivity, and scalability. For electrocatalytic applications, improving the long-term stability of molecular catalysts under operating conditions remains a critical need [11, 12]. In enzyme inhibition, achieving sufficient selectivity to avoid off-target effects while maintaining adequate bioavailability presents ongoing challenges. Continued progress in understanding structure-function relationships, coupled with advances in synthetic methods and characterization techniques, will enable the development of next-generation metal complexes that can meet these demanding requirements and contribute to solving pressing global challenges in energy and health.

5. Conclusion

Metal complexes have demonstrated remarkable versatility as both electrocatalysts and enzyme inhibitors, offering solutions to critical challenges in sustainable energy and human health. The ability to systematically tune the properties of metal complexes through rational ligand design and metal selection provides unprecedented control over their function in diverse applications. In electrocatalysis, metal complexes enable efficient conversion of abundant feedstocks into valuable chemicals and fuels, while in medicinal chemistry, they offer unique mechanisms for modulating enzyme activity with potential

therapeutic benefits. The continued development of structure-activity relationships, mechanistic understanding, and computational tools will accelerate the discovery of improved metal complexes for both domains. The integration of insights from coordination chemistry, materials science, and biochemistry positions the field for continued growth and innovation. As research progresses, the translation of laboratory discoveries to practical technologies will require collaborative efforts across disciplines to address remaining challenges in stability, selectivity, and scalability. The future of metal complex chemistry promises exciting advances that will contribute significantly to global sustainability and improved healthcare outcomes.

References

- 1. C.-M. Che and F.-M. Siu, "Metal complexes in medicine with a focus on enzyme inhibition," *Current Opinion in Chemical Biology*, vol. 14, no. 2, pp. 255–261, 2010, doi: 10.1016/j.cbpa.2009.11.015.
- 2. K. J. Kilpin and P. J. Dyson, "Enzyme inhibition by metal complexes: concepts, strategies and applications," *Chemical Science*, vol. 4, no. 4, pp.1410-1419, 2013, doi: 10.1039/c3sc22349c.
- 3. Dmytro Havrylyuk, D. K. Heidary, and E. C. Glazer, "The Impact of Inorganic Systems and Photoactive Metal Compounds on Cytochrome P450 Enzymes and Metabolism: From Induction to Inhibition," *Biomolecules*, vol. 14, no. 4, p. 441, 2024, doi: 10.3390/biom14040441.
- 4. F. Ding, N. Su, C. Ma, B. Li, W.-L. Duan, and J. Luan, "Fabrication of two novel two-dimensional copper-based coordination polymers regulated by the 'V'-shaped second auxiliary ligands as high-efficiency urease inhibitors," *Inorganic Chemistry Communications*, vol. 170, p. 113319, 2024, doi: 10.1016/j.inoche.2024.113319.
- 5. N. Kaeffer and W. Leitner, "Electrocatalysis with Molecular Transition-Metal Complexes for Reductive Organic Synthesis," *JACS Au*, vol. 2, no. 6, pp. 1266–1289, 2022, doi: 10.1021/jacsau.2c00031.
- N. W. Kinzel, C. Werlé, and W. Leitner, "Transition Metal Complexes as Catalysts for the Electroconversion of CO2: An Organometallic Perspective," Angewandte Chemie International Edition, vol. 60, no. 21, pp. 11628–11686, 2021, doi: 10.1002/anie.202006988.
- 7. Y. Yu, T. Wang, Y. Zhang, J. You, F. Hu, and H. Zhang, "Recent Progress of Transition Metal Compounds as Electrocatalysts for Electrocatalytic Water Splitting," *The Chemical Record*, vol. 23, no. 11, p.e202300109, 2023, doi: 10.1002/tcr.202300109.
- 8. F. Ding, C. Ma, W.-L. Duan, and J. Luan, "Second auxiliary ligand induced two coppor-based coordination polymers and urease inhibition activity," *Journal of Solid State Chemistry*, vol. 331, p. 124537, 2024, doi: 10.1016/j.jssc.2023.124537.
- 9. L. Roth, M. P. Gotsbacher, and R. Codd, "Immobilized Metal Affinity Chromatography as a Drug Discovery Platform for Metalloenzyme Inhibitors," *Journal of Medicinal Chemistry*, vol. 63, no. 20, pp. 12116–12127, 2020, doi: 10.1021/acs.jmedchem.0c01541.
- 10. R. Ye, C. Tan, B. Chen, R. Li, and Z. Mao, "Zinc-Containing Metalloenzymes: Inhibition by Metal-Based Anticancer Agents," *Frontiers in Chemistry*, vol. 8, p.40, 2020, doi: 10.3389/fchem.2020.00402.
- 11. G. Xie, W. Guo, Z. Fang, Z. Duan, X. Lang, and D. Liu et al., "Dual-metal sites drive tandem electrocatalytic CO2 to C2+ products," *Angewandte Chemie*, vol. 136, no. 47, p. e202412568, 2024, doi: 10.1002/ange.202412568.
- 12. J. Guan, "Effect of coordination surroundings of isolated metal sites on electrocatalytic performances," *Journal of Power Sources*, vol. 506, p. 230143, 2021, doi: 10.1016/j.jpowsour.2021.230143.
- 13. H. Agarwala, X. Chen, J. R. Lyonnet, B. A. Johnson, M. Ahlquist, and S. Ott, "Alternating Metal-Ligand Coordination Improves Electrocatalytic CO2 Reduction by a Mononuclear Ru Catalyst," *Angewandte Chemie International Edition*, vol. 135, no. 17, p.e202218728, 2023, doi: 10.1002/anie.202218728.
- 14. M. Luthra, A. C. Castro, D. Balcells, K. Daasbjerg, and A. Nova, "Metal-Dependent Mechanism of the Electrocatalytic Reduction of CO2 by Bipyridine Complexes Bearing Pendant Amines: A DFT Study," ACS Organic & Inorganic Au, vol. 5, no. 1, pp. 26–36, 2024, doi: 10.1021/acsorginorgau.4c00046.

Disclaimer/Publisher's Note: The views, opinions, and data expressed in all publications are solely those of the individual author(s) and contributor(s) and do not necessarily reflect the views of CPCIG-CONFERENCES and/or the editor(s). CPCIG-CONFERENCES and/or the editor(s) disclaim any responsibility for any injury to individuals or damage to property arising from the ideas, methods, instructions, or products mentioned in the content.