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Abstract: Soil moisture variation in humid regions presents high-frequency nonlinearity and is 
strongly influenced by surface conditions, making it difficult for traditional time series models to 
effectively capture long-range dependencies. In this study, a multimodal Transformer network ar-
chitecture is proposed, integrating Sentinel-1 VV/VH radar data, MODIS NDVI, and meteorological 
variables to predict daily 0–10 cm soil moisture content at a 1 km² grid scale in Jiangning District, 
Nanjing. Data from 2021 were used for model training, and 2022 data were used for testing. Verified 
by in-situ measurements, the monthly average of 0–10 cm soil moisture in Jiangning during 2021 
ranged from 0.20 to 0.32 m³/m³, with a standard deviation of 0.035 m³/m³, reflecting its high-fre-
quency nonlinear characteristics. The model achieved an average RMSE of 0.022 m³/m³, which was 
lower than that of LSTM (RMSE = 0.029) and traditional SVR (RMSE = 0.034). The model's interpret-
ability module (attention map) showed that vegetation cover and rainfall in the previous six days 
contributed 41.2% and 27.8%, respectively. This study provides an AI-based approach for modeling 
soil–vegetation–hydrology interactions driven by remote sensing data. 
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1. Introduction 
Soil moisture is a critical variable in terrestrial ecosystems and the hydrological cycle. 

It plays an important role in regulating regional climate, supporting agricultural produc-
tion, and maintaining ecosystem stability [1]. In humid regions, soil moisture dynamics 
are jointly influenced by frequent rainfall, complex terrain, and diverse vegetation, result-
ing in distinct high-frequency nonlinear patterns. Moreover, soil moisture closely inter-
acts with surrounding surface features, leading to pronounced spatiotemporal heteroge-
neity [2]. For example, in Jiangning District, meteorological records over the past two dec-
ades show more than 120 rainy days annually. The abundant precipitation causes 
monthly standard deviations in 0–10 cm soil moisture to reach up to 0.04 m³/m³. During 
the concentrated summer rainfall period, daily changes in soil moisture can reach 0.03–
0.05 m³/m³, significantly higher than those observed in arid and semi-arid regions. Accu-
rately capturing the spatiotemporal distribution and variation mechanisms of soil mois-
ture in such environments is essential for improving water resource management, opti-
mizing precision irrigation, and enhancing the accuracy of regional climate forecasts [3]. 

Traditional time series models, such as the Auto-Regressive Integrated Moving Av-
erage (ARIMA), have long been applied in soil moisture prediction. However, they face 
clear limitations in humid regions. The variation in soil moisture is driven by multiple 
complex factors and involves long-range dependencies. These models, based on linear 
assumptions and short-term historical windows, often fail to capture such dependencies, 
resulting in reduced prediction accuracy [4]. For instance, ARIMA models are unable to 
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effectively represent delayed responses to rainfall events or the prolonged effects of veg-
etation cycles. As a result, the dynamic behavior of soil moisture cannot be accurately 
modeled. In Jiangning District, ARIMA produced a mean absolute error (MAE) of 0.045 
m³/m³ and a root mean square error (RMSE) of 0.058 m³/m³, which does not meet practical 
requirements. In recent years, the development of deep learning has brought new solu-
tions to time series modeling, particularly with the emergence of the Transformer archi-
tecture [5]. The Transformer overcomes key limitations of recurrent neural networks 
(RNNs) and convolutional neural networks (CNNs) in modeling long sequences. By using 
the self-attention mechanism, it enables direct modeling of global dependencies across the 
input sequence, without relying on recursion or convolution operations [6]. This capabil-
ity has led to significant advances in natural language processing and has shown strong 
potential in fields such as computer vision and time series forecasting [7,8]. For time series 
tasks with complex dependency structures, Transformer-based models have achieved 
15%–20% lower RMSE compared to LSTM, demonstrating clear advantages. Meanwhile, 
the rapid progress in remote sensing technology has made it possible to obtain large-scale, 
high-resolution environmental data relevant to soil moisture [9]. Sentinel-1, equipped 
with synthetic aperture radar (SAR), provides surface backscatter data that are sensitive 
to soil moisture changes. In particular, VV and VH polarizations respond strongly to mois-
ture variation, making them suitable for indirect estimation [10]. In Jiangning, a 10% 
change in soil moisture can cause a 0.5–1.0 dB change in VV-polarized backscatter. The 
MODIS sensor offers long-term NDVI data, which correlate with vegetation cover and 
growth status. Vegetation affects soil moisture through processes such as transpiration 
and interception [11]. In densely vegetated areas of Jiangning, a 10% increase in vegetation 
coverage can reduce soil evaporation by 8%–10%. In addition, meteorological factors such 
as rainfall, temperature, and wind speed significantly influence soil moisture and can be 
obtained from ground stations or reanalysis datasets [12,13]. 

Combining the Transformer architecture with multi-source remote sensing data and 
meteorological variables offers a promising approach for soil moisture modeling in humid 
regions [14]. This integration can exploit the Transformer’s strength in capturing complex 
dependencies while leveraging the rich surface information from remote sensing. The re-
sult is high-accuracy, high-resolution predictions of soil moisture. Such models not only 
help fill existing research gaps but also provide powerful tools for understanding soil 
moisture dynamics in humid areas. Furthermore, they can support more precise and sci-
ence-based decision-making in water resource management and agriculture. However, 
research on applying Transformer-based models to soil moisture prediction in humid re-
gions is still at an early stage. Key challenges remain, including how to effectively inte-
grate remote sensing and meteorological data, how to build accurate and efficient Trans-
former models, and how to enhance interpretability to identify the main drivers of soil 
moisture variation. 

2. Materials and Methods 
2.1. Overview of the Study Area 

This study selected Jiangning District of Nanjing as a typical humid region. The area 
is located in a subtropical monsoon climate zone, characterized by humid conditions and 
abundant rainfall. The multi-year average precipitation is approximately 1000–1200 mm. 
Rainfall is unevenly distributed throughout the year and mainly concentrated in summer 
(June to August). The terrain is dominated by low hills and plains, with relatively gentle 
topographic variation. The main soil types are yellow-brown soil and paddy soil. The veg-
etation cover is diverse, including forest land, farmland, grassland, and urban green 
spaces. Jiangning District covers an area of approximately 1561 km², with geographic co-
ordinates ranging from 118°31′ to 119°04′E and from 31°37′ to 32°07′N. Its diverse land-
forms, rich vegetation types, and distinct climatic features provide favorable natural con-
ditions for investigating the spatiotemporal variation of soil moisture in humid regions. 
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Long-term soil moisture monitoring shows significant differences under different land 
use types [15]. In the 0–10 cm soil layer, the annual average soil moisture content is 0.28–
0.32 m³/m³ in forest land and 0.23–0.27 m³/m³ in farmland, indicating the important influ-
ence of vegetation cover on soil moisture. 

2.2. Data Sources and Preprocessing 
The data used in this study include Sentinel-1 radar data, MODIS NDVI, meteoro-

logical observations, and in situ soil moisture measurements. C-band SAR data from Sen-
tinel-1A/B satellites (2021–2022) were radiometrically calibrated and filtered for speckle 
noise using SNAP software. VV and VH polarization data were extracted and resampled 
to a 1 km resolution. MODIS NDVI data were processed using the MRT tool and smoothed 
using the Savitzky–Golay filter to obtain a 1 km resolution time series. Meteorological 
data from five surrounding stations were interpolated using the inverse distance 
weighting (IDW) method and calibrated with ERA5 reanalysis data [16]. In 2021, the an-
nual average temperature was 16.5°C and total precipitation was 1150 mm. The differ-
ences from ERA5 data were within ±0.5°C (temperature) and ±5% (precipitation). Soil 
moisture at 0–10 cm depth was monitored at ten TDR stations. After quality control and 
interpolation, the relative error was controlled within ±5%. The statistical characteristics 
of all datasets are summarized in Table 1. 

Table 1. Data Sources and Preprocessing Results in This Study. 

Data Type Main Indicators 
Data Range or Statistical 

Results 

Sentinel-1 Radar Data 
Mean VV polarization 
backscatter coefficient 

-18 to -10 dB 

 
Mean VH polarization 
backscatter coefficient 

-25 to -18 dB 

 Standard deviation 1 to 2 dB 
MODIS NDVI Data Monthly average 0.35 to 0.70 

 
Average during growing 

season (May to September) 
≥0.55 

Meteorological Data Annual average temperature 16.5°C 
Measured Soil Moisture 

Data 
Relative error Within ±5% 

2.3. Construction and Validation of the Multimodal Transformer Network 
Architecture 

The multimodal Transformer network consists of five layers. The input layer inte-
grates standardized Sentinel-1 VV/VH data, MODIS NDVI, and meteorological variables. 
The 1D-CNN feature extraction layer is applied separately to each modality to extract rel-
evant features. The core Transformer encoder includes six layers, each with eight self-
attention heads, designed to capture long-range dependencies across input sequences. 
The fusion layer performs dimensionality reduction and concatenates the features. The 
output layer predicts soil moisture using root mean square error (RMSE) as the loss func-
tion. The model is trained using data from 2021 and tested on data from 2022. Each sample 
contains multi-source data from 10 days before and after the target day, along with the 
observed soil moisture value on that day. Stochastic gradient descent is used for optimi-
zation, with a learning rate of 0.001 and a batch size of 64. To prevent overfitting, L2 reg-
ularization (coefficient 0.0001) and dropout (rate 0.2) are applied. After 100 training 
epochs, the validation RMSE stabilizes after epoch 30. The model is evaluated using RMSE, 
mean absolute error (MAE), and the coefficient of determination (R2), and is compared 
with LSTM and SVR models to demonstrate its performance advantage. 
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3. Results and Discussion 
3.1. Evaluation of Model Prediction Performance 

The trained multimodal Transformer model was evaluated using the test dataset. Re-
sults show that the model performed well in predicting daily soil moisture content at the 
0–10 cm depth and 1 km² grid scale in Jiangning District, achieving an RMSE of 0.022 
m³/m³, an MAE of 0.018 m3/m3, and an R² of 0.92. Further analysis of monthly prediction 
performance indicates that during the dry season (November to March of the following 
year), the average RMSE was 0.020 m3/m3 and the R² reached 0.94. During the rainy sea-
son (April to October), the average RMSE was 0.024 m³/m³ and the R² was 0.90. Although 
prediction during the rainy season is more difficult, the model still maintained a high level 
of accuracy. These results suggest that the model can accurately capture the spatiotem-
poral variation characteristics of soil moisture, with high agreement between predicted 
and observed values. It shows strong capability in handling complex soil moisture data. 
This high level of prediction accuracy provides strong support for practical applications. 
By incorporating film flow dynamics via the PDI model, the authors resolved systematic 
underestimations of hydraulic conductivity in medium moisture ranges, a critical ad-
vancement for modeling peatland hydrology [17]. In agricultural production, farmers can 
use the model’s prediction results to implement precise irrigation, adjusting the timing 
and amount of irrigation based on actual needs [18]. This not only meets the water re-
quirements for crop growth but also avoids unnecessary water consumption. For example, 
in a large farmland area in Jiangning District, if this model is applied for irrigation guid-
ance, it is estimated that 15% to 20% of irrigation water can be saved annually [19]. At the 
same time, it can reduce soil compaction and nutrient loss caused by over-irrigation, con-
tributing to sustainable agricultural development. In the field of water resource manage-
ment, accurate soil moisture predictions enable managers to plan reservoir storage and 
release more reasonably, optimize water resource allocation, and improve their capacity 
to respond to drought and flood disasters [20]. 

Detailed data are provided in Table 2. 

Table 2. Prediction Performance of the Multimodal Transformer Model in Different Seasons. 

Season RMSE (m³/m³) MAE (m³/m³) R² 
Whole year 0.022 0.018 0.92 
Dry season 

(November to March) 
0.020 – 0.94 

Rainy season (April 
to October) 

0.024 – 0.90 

The multimodal Transformer model was compared with the LSTM and SVR models. 
The results are shown in Table 3. The LSTM model achieved an RMSE of 0.029 m³/m³, an 
MAE of 0.023 m³/m³, and an R² of 0.88. The SVR model showed an RMSE of 0.034 m³/m³, 
an MAE of 0.027 m³/m³, and an R² of 0.85. Seasonal comparison indicates that in the dry 
season, the RMSE of the LSTM model was 0.025 m³/m³, and that of the SVR model was 
0.030 m³/m³. In the rainy season, the RMSE of the LSTM model increased to 0.032 m³/m³, 
while the SVR model reached 0.038 m³/m³. Both were significantly higher than those of 
the multimodal Transformer model. It is evident that the multimodal Transformer model 
outperforms the LSTM and SVR models in all evaluation metrics. Although the LSTM 
model can handle time series data, it has limitations in capturing long-range dependencies. 
The SVR model, based on statistical learning theory, performs poorly when modeling 
complex nonlinear relationships [21]. In contrast, the self-attention mechanism in the 
Transformer architecture can effectively capture long-distance dependencies in soil mois-
ture variation. By integrating multi-source remote sensing data and meteorological varia-
bles, the model significantly improves prediction accuracy [22]. When the soil moisture 
data predicted by this model are incorporated into regional climate models, the simulation 
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of land–atmosphere interaction processes can be effectively improved. This enhances the 
accuracy of climate prediction and provides more reliable support for decision-making 
under climate change. The improvement is attributed to the model’s precise representa-
tion of soil moisture dynamics, which offers more realistic input parameters for climate 
models and helps optimize their performance (Table 3). 

Table 3. Prediction Performance Comparison of Different Models for Soil Moisture. 

Model 
RMSE 
(m³/m³) 

MAE 
(m³/m³) 

R² 
RMSE in Dry Season 

(m³/m³) 
RMSE in Rainy 
Season (m³/m³) 

Multimodal 
Transformer 

0.022 0.018 0.92 0.020 0.024 

LSTM 0.029 0.023 0.88 0.025 0.032 
SVR 0.034 0.027 0.85 0.030 0.038 

3.2. Model Interpretability Analysis 
To better understand the model's prediction process, attention maps were used to 

perform interpretability analysis. The results showed that vegetation cover and data from 
the six days before rainfall contributed 41.2% and 27.8% to the model, respectively. In 
humid regions, vegetation consumes soil moisture through transpiration. At the same 
time, its canopy intercepts rainfall, reduces surface runoff, and increases infiltration, mak-
ing vegetation cover a key factor influencing soil moisture variation [23]. In addition, soil 
moisture content and soil texture before rainfall affect the infiltration rate and soil mois-
ture increase during precipitation. Therefore, pre-rainfall data also contribute signifi-
cantly to the model’s predictions. 

Further analysis by land use type showed that in densely forested areas, the contri-
bution of vegetation cover reached 50%–55%. In contrast, in farmland areas, the initial soil 
condition and meteorological factors before rainfall had relatively higher importance. This 
is consistent with the mechanisms of soil moisture variation under different land use types. 
The interpretability of the model provides clear guidance for practical applications. For 
example, in agricultural planning, key influencing factors can be identified for different 
land use types to develop targeted soil moisture management strategies [24]. For forested 
areas, focus should be placed on vegetation protection and appropriate planting to regu-
late soil moisture. For farmland, more attention should be given to pre-rainfall soil condi-
tions and weather changes to prepare for irrigation or drainage in advance. These 
measures can improve agricultural productivity and water use efficiency [25]. 

4. Conclusion 
This study developed a multimodal Transformer network that integrates Sentinel-1 

VV/VH radar data, MODIS NDVI, and meteorological variables for spatiotemporal mod-
eling of soil moisture in humid regions. Experimental results showed that the model 
achieved an RMSE of 0.022 m³/m³ in predicting soil moisture content in Jiangning District. 
Compared with the LSTM model (RMSE = 0.029 m³/m³) and the SVR model (RMSE = 0.034 
m³/m³), the prediction accuracy improved by 24.1% and 35.3%, respectively. The model 
effectively captured long-range dependencies in soil moisture variation through the self-
attention mechanism. By combining multi-source remote sensing data and meteorological 
variables, it achieved high prediction accuracy. Attention map analysis indicated that veg-
etation cover and data from the six days before rainfall were key factors influencing the 
predictions. Their relative contributions varied across different land use types, revealing 
the underlying mechanisms driving soil moisture variation. In forested areas, the contri-
bution of vegetation cover reached 50%–55%, while in farmland, the effects of initial soil 
conditions and meteorological factors before rainfall were more significant. These find-
ings provide a scientific basis for soil moisture management under different land use 
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types. From an application perspective, the model’s high prediction accuracy can support 
precision irrigation in agriculture. In Jiangning District, its use is expected to reduce irri-
gation water use by 15%–20% annually. It can also help optimize water resource allocation 
and enhance regional capacity to manage drought and flood risks. When incorporated 
into regional climate models, the predicted soil moisture data can improve the simulation 
of land–atmosphere interactions and enhance the accuracy of climate forecasting. 
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