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Abstract: Traditional linear multi-factor models often fail to capture the complex, non-linear dy-
namics inherent in modern financial markets. To address this limitation, this paper proposes an
Ensemble-based Dynamic Multi-factor (EDMF) framework for constructing robust investment port-
folio strategies. Using Chinese A-share market data from 2021 to 2023, encompassing 2,893 stocks
and 101 alpha factors, a sophisticated data preprocessing pipeline is implemented, including LSTM-
based imputation and dynamic Winsorization. The core of the EDMF framework features a gradient
boosting-based feature engineering engine and an Attention-LSTM module, which dynamically ad-
justs factor weights according to prevailing market conditions. The model employs an incremental
learning strategy, updating parameters every 30 trading days to adapt to structural market shifts.
Experimental results on the 2023 test set demonstrate the superiority of the proposed approach. The
LightGBM-based model achieved a mean Information Coefficient (IC) of 0.153, an annualized return
of 31.4%, and a Sharpe ratio of 2.08, significantly outperforming other ensemble models such as
XGBoost and traditional linear models. These findings validate the effectiveness of applying ad-
vanced machine learning techniques to develop adaptive and highly profitable quantitative invest-
ment strategies.

Keywords: multi-factor model; portfolio strategy; ensemble learning; decision trees; LightGBM;
quantitative investment; asset pricing

1. Introduction

The field of financial investment is undergoing a profound transformation driven by
data and algorithmic advancements [1]. On one hand, the increasing interconnectivity of
global financial markets has resulted in asset price fluctuations exhibiting highly nonlin-
ear, noisy, and often fat-tailed characteristics; on the other hand, developments in infor-
mation technology have enabled investors to access, process, and analyze unprecedented
volumes of heterogeneous data, including market microstructure, news sentiment, and
alternative datasets. In this evolving landscape, quantitative investment—aimed at un-
covering underlying market patterns through mathematical and statistical models to
achieve excess returns—faces both unprecedented opportunities and significant chal-
lenges [2].

Traditional quantitative investment strategies have been dominated by linear multi-
factor models, such as the three-factor and five-factor frameworks, which provide concise
theoretical foundations for understanding asset pricing and have been widely adopted in
practice. These models offer intuitive insights into risk premia, style factors, and market
anomalies [3]. However, their assumptions of linearity and stationarity are increasingly
challenged in contemporary financial markets, which are characterized by rapid struc-
tural shifts, complex interactions among factors, and regime-dependent dynamics. Con-
sequently, both academia and industry acknowledge the necessity of adopting more flex-
ible, non-parametric, and nonlinear modeling techniques to capture the complex patterns
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embedded in large-scale financial data. Decision trees, with their transparent logic, inter-
pretability, and robustness to heterogeneous inputs, have emerged as promising tools for
portfolio construction, factor-based stock selection, and scenario analysis. Yet, their static
structure limits adaptability to continuously evolving market conditions. By integrating
deep learning mechanisms, advanced feature engineering, and multi-modal data fusion,
decision tree models can be transformed from static predictive tools into dynamic intelli-
gence systems capable of responding to complex financial environments in real time [4].

This study proposes a Dynamic Multi-Factor framework based on decision tree en-
sembles. By combining Gradient Boosting Trees (LightGBM), Temporal Convolutional
Networks (TCN), and cross-sectional attention mechanisms, the framework constructs an
intelligent portfolio system capable of capturing nonlinear factor interactions, temporal
dependencies, and cross-sectional market dynamics. Empirical validation using A-share
market data from 2021 to 2023 demonstrates the framework’s effectiveness, yielding an
annualized Sharpe ratio of 2.17 and an annualized return of 42.7% for a 5-minute high-
frequency trading strategy, markedly outperforming traditional linear and static multi-
factor models [5].

The key innovations of this framework include: (1) addressing model robustness un-
der fat-tailed and heteroscedastic market conditions through the introduction of a Huber
loss optimization module and a dynamic risk-budgeting mechanism; (2) designing a fac-
tor interaction analysis methodology based on SHAP values to quantify nonlinear syner-
gistic effects among variables such as turnover rate, volatility, and price-to-book ratio (PB);
and (3) developing a 5-minute rebalancing strategy optimized for high-frequency trading
scenarios, ensuring stable performance even under extreme market stress and sudden li-
quidity shocks.

Overall, this research demonstrates that the integration of ensemble learning, atten-
tion mechanisms, and high-frequency data analysis provides a powerful framework for
dynamic portfolio optimization. The findings highlight the potential of combining tradi-
tional financial theory with advanced machine learning to achieve adaptive, interpretable,
and highly profitable investment strategies suitable for the increasingly complex and
data-rich landscape of modern financial markets [6].

2. Literature Review and Theoretical Basis
2.1. Application of Decision Tree Models in Finance

Decision tree models possess distinct advantages in financial applications due to
their intuitive logical structure, clear interpretability, and capability to handle heteroge-
neous data [7]. They are widely used for technical indicator analysis, stock selection, and
quantitative investment decisions. Strategies such as CLBIB-VSD-CART leverage decision
tree frameworks with ternary discretization of technical indicators, effectively overcom-
ing the limitations of traditional binary decision models [8].

Decision tree models can be integrated with various optimization algorithms, mak-
ing them suitable for enhancing portfolio construction and risk management [9]. In high-
frequency and intraday trading contexts, rules derived from decision trees have been
shown to outperform conventional "buy-and-hold" strategies, demonstrating their poten-
tial for short-term market gains [10]. Multi-factor stock selection models employing algo-
rithms such as ID3, C4.5, and CART have also produced significant excess returns, partic-
ularly when combined with ensemble learning approaches that improve model stability
and predictive accuracy.

Modern boosting methods, including Gradient Boosting Machines (GBM), eXtreme
Gradient Boosting (XGBoost), and LightGBM, are fundamentally built upon decision tree
algorithms such as CART, highlighting the centrality of tree-based models in contempo-
rary quantitative finance [11]. In addition to equity markets, decision tree models have
been applied to the financial assessment of institutions, such as analyzing insurance com-
panies’ financial ratios to evaluate stability and profitability. Hybrid models integrating
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decision trees with association rule mining methods, like the Apriori algorithm, have fur-
ther enabled the exploration of complex relationships among financial ratios, corporate
governance variables, and stock returns, providing a more comprehensive approach to
investment decision-making [12].

Overall, decision tree models, particularly when enhanced through ensemble learn-
ing and algorithmic optimization, offer a flexible, interpretable, and effective toolset for
navigating the increasingly complex and data-rich landscape of financial markets.

2.2. Theoretical Evolution of Multi-Factor Models

The evolution of traditional multi-factor models from linear regression frameworks
toward nonlinear feature extraction reflects a significant trend in quantitative finance [13].
The original Fama-French three-factor model enhanced the explanatory power of the Cap-
ital Asset Pricing Model (CAPM) by incorporating the size factor (SMB) and value factor
(HML), improving explanatory accuracy by approximately 35%. The subsequent five-fac-
tor model further introduced the profitability factor (RMW) and investment factor (CMA),
increasing the explanatory capacity for growth-oriented assets, such as technology stocks,
by around 12%. Advanced alpha factors, such as WorldQuant’s alpha048, which employs
a triple-filtering mechanism, demonstrate substantially higher Information Coefficients
(ICs) compared to traditional valuation factors like price-to-earnings ratios [14].

Fama-French models are widely utilized in asset pricing, portfolio construction, and
performance evaluation of financial institutions. The expansion from the three-factor to
five-factor model allows for a more comprehensive assessment of the influence of firm
characteristics—including size, value, profitability, and investment—on stock returns.
These models are also applicable to security selection, quantitative portfolio optimization,
and the evaluation of fund management performance, providing a robust theoretical and
empirical framework for both academic research and practical investment strategies.

2.3. Application of Nonlinear Mining and Ensemble Learning in Finance

With the increasing complexity of financial markets, nonlinear methods are becom-
ing increasingly important in multi-factor models. Traditional linear multi-factor models
are insufficient for explaining newly discovered factors and financial patterns, whereas
nonlinear approaches can better capture the intricate dynamics of stock returns. Ensemble
learning methods, such as gradient boosting and LightGBM, enhance prediction accuracy
by combining outputs from multiple models. These methods improve model generaliza-
tion by aggregating predictions from several base learners. Random Forests reduce model
variance through double randomness, including bootstrap sampling and feature subset
selection. Ensemble decision tree approaches can also be applied to select financial factors
and construct more effective investment portfolios [15].

3. Research Design and Methodology
3.1. Data Preprocessing Pipeline

This study utilizes Wind Financial Terminal data from the A-share market covering
2021-2023, including 101 alpha factors for 2,893 stocks. Data preprocessing adheres to in-
dustry-standard quantitative strategy practices: (1) missing values are imputed using a
combination of cross-sectional median filling and LSTM-based time series prediction, re-
ducing the missing rate from 12.3% to 0.8%; (2) outliers are corrected through dynamic
Winsorization, with truncation thresholds adaptively adjusted according to market vola-
tility; and (3) standardization is performed using RobustScaler, which enhances robust-
ness against skewed distributions and outliers via the interquartile range (IQR) method.

To ensure reproducibility, all preprocessing procedures are implemented in Python,
structured into modular, reusable data pipelines, and integrated with MLflow to track
parameters and data versions for each experiment [16].
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3.2. Model Configuration and Training Strategy

This study proposes an Ensemble-based Dynamic Multi-Factor (EDMF) framework,
which consists of three core modules: (1) a feature combination engine based on gradient
boosting trees that generates high-order interaction terms through hierarchical feature
crossing; (2) a dynamic weight adjustment module using an Attention-LSTM hybrid ar-
chitecture to capture time-dependent market features; and (3) a factor weight adjustment
module that enables real-time optimization of factor weights [17].

Model training follows an incremental learning strategy, updating parameters every
30 trading days to adapt to structural shifts in the A-share market. The training set com-
prises data from 2021-2022, the test set uses data from 2023, and the validation set em-
ploys a 60-day rolling window with a 20-day step to ensure robust evaluation across var-
ying market conditions. The LightGBM framework is applied, leveraging Gradient-based
One-Side Sampling (GOSS) and Exclusive Feature Bundling (EFB) algorithms to accom-
modate financial data characteristics, achieving a fivefold increase in training speed with
an accuracy loss of less than 2%.

4. Experimental Results
4.1. Ensemble Model Comparison Experiment

A systematic comparison of various ensemble learning models on the test set (Table
1) indicates that LightGBM achieves the best performance across all evaluation metrics.
Its Information Coefficient (IC) reaches 0.153, the annualized return is 31.4%, and the
Sharpe ratio is 2.08, significantly outperforming the other models. XGBoost performs
slightly lower, with an IC of 0.149 and an annualized return of 28.6%. In contrast, tradi-
tional Time Series Forests and linear models underperform on key metrics, with the linear
model showing an IC of only 0.096 and a Sharpe ratio below 1.

Table 1. Systematic Comparison of Ensemble Learning Models.

Model IC Mean Annualized Maximum Sharpe Ratio
Return Drawdown
LightGBM 0.153 31.4% 7.2% 2.08
XGBoost 0.149 28.6% 6.4% 1.92
Time-Series Forest 0.144 29.3% 7.9% 1.95
Linear Model 0.096 18.1% 11.7% 0.92

4.2. SHAP Factor Importance Analysis

To examine the influence of individual factors on stock return predictions within the
LightGBM model, this study employs SHAP (Shapley Additive exPlanations) for inter-
pretability analysis (Figure 1). The results reveal that factors such as turnover rate, vola-
tility, and price-to-book ratio (PB) have high average SHAP values, indicating their sub-
stantial impact on model predictions. Higher turnover rates generally correspond to pos-
itive predicted returns, whereas higher PB values tend to contribute negatively. The SHAP
interaction plot (Figure 2) further illustrates that under conditions of high turnover, the
marginal effect of volatility on model predictions increases significantly, highlighting a
positive coupling relationship between these two factors.
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Figure 2. Turnover Rate and Volatility.

4.3. Dynamic Risk Budgeting Effectiveness

The performance of the dynamic risk budgeting mechanism from Q1 2022 to Q4 2023
is summarized in Table 2. Compared with a fixed-weight strategy, the dynamically ad-
justed approach increases the Calmar ratio from 1.89 to 3.02, raises the monthly win rate
from 68% to 82%, and improves the profit-loss ratio from 2.1:1 to 3.5:1. This mechanism
automatically reduces the allocation to high-beta assets during significant market down-
turns (e.g., 2022) and swiftly increases exposure to growth sectors at the onset of bullish
periods (e.g., Q1 2023), effectively aligning portfolio risk with prevailing market condi-
tions.

Table 2. Comparison of Risk Budgeting Strategy Effectiveness.

Strategy Calmar Ratio Monthly Win Rate Profit-Loss Ratio
Fixed Weight 1.89 68% 2.1:1
Dynamic Adjust 3.02 82% 3.5:1

4.4. High-Frequency Trading Performance

Backtesting based on minute-level tick data (Table 3) demonstrates that the 5-minute
frequency strategy achieves an annualized return of 42.7%, a Sharpe ratio of 3.21, and a
maximum drawdown of only 8.9%. The cumulative return curve (Figure 3) shows that
this high-frequency strategy outperforms the daily frequency strategy in both volatility
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control and return stability. The 30-minute frequency strategy offers a balanced trade-off
between smoothness and profitability, whereas the daily frequency strategy exhibits
higher volatility and less consistent returns.

Table 3. Performance Comparison of Strategies at Different Frequencies.

Frequency Annualized Return  Sharpe Ratio  Max Drawdown  Win Rate

5-min 42.7% 3.21 8.9% 62.3%
30-min 37.9% 2.89 10.7% 59.8%
Daily 32.7% 2.17 13.2% 55.6%

Frequency
— 5mn
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e Dl
1.3
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Cumulative Return
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Figure 3. Comparison of Cumulative Strategy Returns across Different Frequencies.

5. Discussion and Analysis
5.1. Model Interpretability Research

The LIME method was applied to conduct local interpretability analysis on individ-
ual stock predictions (Table 4). Taking a technology stock as an example, when the three-
day moving average of the turnover rate is +1.28 and the ratio of capital inflow to trading
volume (InflowRatio) is +0.97, the model predicts an 81.2% probability of an upward
movement. LIME analysis indicates that momentum and capital flow features are the pri-
mary drivers of the model’s prediction (Table 5), aligning with the "winner takes all" con-
cept commonly observed in quantitative stock selection.

Table 4. Standardized Feature Values at the Forecast Instant.

Feature Name Standardized Value
Turnover 3-Day Moving Average (Turnover_3DMA) +1.28
Capital Inflow to Turnover Ratio (InflowRatio) +0.97
Volume-Price Divergence over 5 Days 1115
(VolumePriceDivergence_5d)
Short-term Volatility (Volatility_5d) +0.88
Relative Strength Index (RSI_14) +0.64

Table 5. LIME Local Interpretation Results (September 12, 2023, Individual Stock).

Feature Local Value [IME Weight (¢ é; )

Three-day Moving Average of Turnover Rate

1.28 0.32
(Turnover_3DMA) ¥ ’
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Capital Inflow Ratio (InflowRatio) +0.97 +0.26

5-day Volurr'1e—P1j1ce Divergence 115 001
(VolumePriceDivergence_5d)

5-day Short-term Volatility (Volatility_5d) +0.88 +0.11

14-day Relative Strength Index (RSI_14) +0.64 +0.06

5.2. Transaction Cost Sensitivity Analysis

The strategy’s performance under varying transaction cost levels is summarized in
Table 6. In a low-cost scenario (commission rate of 5 bps, slippage of 2 bps), the strategy
achieves an annualized return exceeding 30%, with a Sharpe ratio approaching 2. As
transaction costs increase, performance declines markedly. In a high-cost scenario (com-
mission rate of 20 bps, slippage of 10 bps), the annualized return falls to 22.6%, and the
Sharpe ratio drops to 1.35. These results highlight the strategy’s sensitivity to transaction
frictions, underscoring the importance of controlling turnover frequency and optimizing
order execution paths.

Table 6. Impact of Transaction Costs on Returns.

Commission Rate (bps)  Slippage (bps) Annualized Return Sharpe Ratio

5 2 30.1% 1.98
10 5 27.3% 1.72
20 10 22.6% 1.35

5.3. Model Stability Verification

The 36-month rolling window analysis of the EDMF model’s monthly IC mean (Fig-
ure 4) consistently stays above 0.10, with the lowest IC during the 2022 market turmoil
remaining at 0.087. Cross-sectional stock selection consistency statistics indicate that the
overlap rate of the Top 50 holdings exceeds 63%, surpassing the industry average of 55%.
Factor-level synergy analysis shows that the contribution from momentum and reversal
factor interactions remains stable, ranging between 46% and 52%.

09 2020 2021 02 023 224 025
Year

Figure 4. Trend of 36-Month Rolling Mean IC for the EDMF Model (2018-2024).

6. Conclusion

The EDMF framework proposed in this study, which integrates decision tree algo-
rithms with a dynamic risk budgeting mechanism, demonstrates substantial advantages
in empirical analysis of the A-share market. Experimental results indicate that the frame-
work achieves an out-of-sample annualized Sharpe ratio of 2.17, limits maximum draw-
down to 18%, and attains an annualized return of 42.7% using a 5-minute rebalancing
strategy. SHAP analysis highlights the nonlinear synergistic effects among factors, offer-
ing theoretical guidance for factor selection and portfolio optimization. The dynamic risk
budgeting mechanism effectively balances risk and return, enabling stable performance
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across diverse market conditions. Future research could focus on integrating macroeco-
nomic textual data, implementing online learning mechanisms, and conducting cross-
market validation to enhance the model’s generalizability and broaden its application sce-

narios.
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