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Abstract: The equitable distribution of educational resources has become a key focus in global edu-
cation development. While advanced technologies such as artificial intelligence provide tools for 
data analysis and decision-making, their integration into educational planning raises challenges in 
fairness assessment. This paper aims to address the limitations of traditional evaluation methods by 
proposing a quantitative model that captures the complexity and heterogeneity of educational eco-
systems. A multi-dimensional framework is introduced, supported by optimization algorithms and 
fairness indicators, to enhance the transparency and effectiveness of educational resource allocation. 
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1. Introduction 
The inequality in resource distribution remains a key challenge in achieving fairness 

in global education, highlighting the need to address disparities that may arise during the 
pursuit of educational advancement. Traditional evaluation methods often rely on a sin-
gle economic indicator, with limited consideration of critical aspects in the educational 
production process, such as the deployment structure of teaching staff, the quality of dig-
ital hardware environments, and the standards of course delivery. Consequently, the out-
comes of policy interventions often fail to meet expectations. The current emerging quan-
titative models provide apparent limitations in the ingredients of the increasingly dy-
namic regional differences as described above. Furthermore, the static weight allocation 
process in knowing educational production institution structure and investment cannot 
translate to the complexity of the spatio-temporal heterogeneity of the educational eco-
system. In this study we focus on these pain points and develop a 3D index system that 
includes hardware investment, software strength and development potential, in addition 
to re-establishing the calculation dimension of the Gini coefficient for heightened cross-
regional comparability. Then we create a multi-objective optimization framework that in-
tegrates the policy constraints and aspects of education as a real variable, and a deep re-
inforcement learning algorithm model to simulate the game process of a resource alloca-
tion process to create a dynamic situational decision-making schema as it relates to effi-
ciency consideration and also fairness. The experimental design focuses on verifying the 
explanatory power and prediction accuracy of the model in real educational scenarios, 
revealing the differentiated effects of different intervention paths on the fairness index, 
and providing an innovative methodology for solving the problem of misallocation of 
educational resources. 
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2. Quantitative Model of Educational Resource Fairness 
2.1. Construction of the Index System 

The quantification of the fairness of educational resources requires the construction 
of a multi-dimensional evaluation system, with a focus on three core dimensions: spatial 
balance, group coverage, and resource adequacy. Spatial equilibrium measures the differ-
ences in resource allocation between counties or schools, and adopts the improved Gini 
coefficient to eliminate the defect of traditional algorithms being sensitive to extreme val-
ues [1]. Define the total amount of educational resources as R, and the distribution se-
quence of resources within counties or between schools as {r1, r2,..., rn}, the optimization 
formula of the Gini coefficient is (1): 

𝐺𝐺 = 1
2𝑛𝑛2𝜇𝜇
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Among them, 𝜇𝜇 is the mean value of resources, and 𝑤𝑤𝑖𝑖𝑗𝑗  is the dynamic weight ma-
trix based on geographical distance or population density to enhance regional compara-
bility. Group coverage focuses on the proportion of resource acquisition for vulnerable 
groups such as migrant children and students with disabilities, and constructs the cover-
age index 𝐶𝐶 as shown in Formula (2): 
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In the formula, 𝐸𝐸𝑘𝑘 represents the theoretical proportion of resources that the KTH 
type of group should enjoy, 𝐴𝐴𝑘𝑘 represents the actual proportion, and 𝛼𝛼𝑘𝑘 represents the 
group weight determined by the entropy weight method, reflecting the differences in pol-
icy priorities [2]. 

The compliance levels of basic indicators such as per-student funding and teacher-
student ratio were evaluated for resource adequacy, using standardized thresholds and 
linear weighted models. Define the per-student funding adequacy 𝑆𝑆𝑓𝑓 and the student-
teacher ratio adequacy 𝑆𝑆𝑡𝑡, as shown in Formula (3): 

𝑆𝑆𝑓𝑓 = 𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝐹𝐹𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠𝑠𝑠
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Among them, 𝐹𝐹𝑠𝑠𝑡𝑡𝑠𝑠𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and 𝑇𝑇𝑠𝑠𝑡𝑡𝑠𝑠𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  represent the national or regional education 
standard values. The comprehensive sufficiency Index 𝐴𝐴 is synthesized by weighting the 
indicators as shown in Formula (4): 

𝐴𝐴 = 𝛽𝛽1𝑆𝑆𝑓𝑓 + 𝛽𝛽2𝑆𝑆𝑡𝑡            (4) 
The weight coefficient 𝛽𝛽 is determined through dual verification of principal com-

ponent analysis and expert scoring method to ensure the reliability and validity of the 
index. This system provides a structured analysis framework for accurately diagnosing 
the bottlenecks of educational equity through the deconstruction of spatial differences, 
the characterization of group heterogeneity and the control of resource bottom lines [3]. 

2.2. Comprehensive Index Calculation Model (ERF Index) 
2.2.1. Improvement of the Gini Coefficient 

The traditional Gini coefficient has significant limitations in the analysis of the spatial 
balance of educational resources. Its symmetry assumption and linear ranking rules are 
difficult to accurately describe the non-uniform distribution characteristics of differences 
within counties or between schools. To address this issue, a multi-dimensional weight 
correction mechanism is introduced to reconstruct the Gini coefficient algorithm. The ed-
ucational resource allocation sequence 𝑋𝑋 = {𝑥𝑥1, 𝑥𝑥2, . . . , 𝑥𝑥𝑛𝑛}𝑋𝑋 = \{𝑥𝑥1, 𝑥𝑥2, . . . , 𝑥𝑥𝑛𝑛\}𝑋𝑋 =
{𝑥𝑥1, 𝑥𝑥2, . . . , 𝑥𝑥𝑛𝑛} corresponds to the population proportion sequence of each geographical 
unit 𝑃𝑃 = {𝑝𝑝1, 𝑝𝑝2, . . . , 𝑝𝑝𝑛𝑛}𝑃𝑃 = \{𝑝𝑝1, 𝑝𝑝2, . . . , 𝑝𝑝𝑛𝑛\}𝑃𝑃 = {𝑝𝑝1, 𝑝𝑝2, . . . , 𝑝𝑝𝑛𝑛}. The improved calculation 
model of the Gini coefficient 𝐺𝐺′𝐺𝐺′𝐺𝐺′ is shown in Formula (5): 

𝐺𝐺′ =
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Among them, 𝑋𝑋� is the average per capita possession of educational resources. The 
weight pipj is embedded in the influence of population distribution differences on fairness 
to eliminate the bias caused by the traditional algorithm ignoring regional scale heteroge-
neity. This model converts the area comparison of the Lorentz curve into a dynamic 
weighted distance measure, making the calculation results more in line with the policy 
logic of "on-demand allocation" of educational resources [4]. 

The improved Gini coefficient, as the core component of the 𝐸𝐸𝐸𝐸𝐹𝐹 index, needs to be 
standardized and coupled with the indicators of group coverage and resource adequacy. 
After eliminating the dimensional differences by using the range method, the weights 
𝜔𝜔1,𝜔𝜔2,𝜔𝜔3 of each dimension are determined by the entropy weight method, and the com-
prehensive index is constructed as shown in Formula (6): 

𝐸𝐸𝐸𝐸𝐹𝐹 = 𝜔𝜔1(1 − 𝐺𝐺′) + 𝜔𝜔2𝐶𝐶 + 𝜔𝜔3𝐴𝐴         (6) 
In the formula, 𝐶𝐶  represents the group coverage index and 𝐴𝐴 represents the re-

source adequacy index. Improve the Gini coefficient to capture the matching efficiency of 
resource distribution and population density in the spatial dimension, avoid the underes-
timation risk of weak areas by a single economic indicator, and provide a robust quanti-
tative benchmark for cross-regional fairness comparisons. This model enhances the tar-
geting of policy intervention by decoupling the scale effect and structural effect of re-
source allocation. 

2.2.2. Synthesis of Comprehensive Index 
The synthesis of the comprehensive index requires overcoming technical bottlenecks 

in the standardization of multi-dimensional indicators and the allocation of weights to 
achieve coordinated optimization of indicators including spatial balance, group coverage, 
and resource adequacy. To improve the Gini coefficient G', the population coverage index 
C and the resource adequacy index A, due to the differences in dimension and order of 
magnitude, the Z-score standardization method needs to be adopted to eliminate the dis-
tribution shift if (7): 

𝑋𝑋𝑘𝑘′ = 𝑋𝑋𝑘𝑘−𝜇𝜇
𝜎𝜎

             (7) 

Among them, 𝜇𝜇 is the mean value of the index, 𝜎𝜎 is the standard deviation. After 
standardization, each index is rescaled to have a mean of 0 and a standard deviation of 1, 
allowing for comparison across different units even if the original data does not follow a 
normal distribution. The construction of the ERF index adopts a nonlinear addition-mul-
tiplication hybrid model to enhance the characterization ability of the interaction effect of 
the index, such as Formula (8): 

𝐸𝐸𝐸𝐸𝐹𝐹 = ∏ (1 + 𝜔𝜔𝑗𝑗𝐼𝐼𝑗𝑗) − 13
𝑗𝑗=1           (8) 

Among them, 𝐼𝐼𝑗𝑗 represents the standardized index value. This model captures the 
synergy or antagonism among indicators through the product term. For example, the im-
provement of resource adequacy may amplify the marginal benefit of the optimization of 
spatial equilibrium. When using 1−𝐺𝐺′as the spatial dimension input, it is necessary to ver-
ify its independence from the group coverage index to avoid multicollinearity. The syn-
thetic model needs to be tested for robustness through Monte Carlo simulation, and the 
Kendall consistency coefficient is used to evaluate the stability of the ERF index ranking 
under different weight distribution schemes to ensure that the results are not sensitive to 
parameter fluctuations [5]. 
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3. Dynamic Optimization Algorithm Design 
3.1. Multi-Objective Optimization Model 
3.1.1. Decision Variable 

The definition of decision variables is the central link in the construction of multi-
objective optimization models, and an accurate mapping of adjustable elements in the al-
location of educational resources is needed. The model captures the total amount of edu-
cational resources in the county, the teacher turnover rate, and the proportion of special 
investment for special groups, which represent, respectively, the operational dimensions 
of spatial balance adjustments, the redistribution of human resources, and the improve-
ment of group coverage. The total amount of resources has upper and lower limits based 
on the regional population size and level of economic development to avoid excessive 
concentration or dispersion of resources. The turnover rate variable is constrained by fac-
tors such as teachers' professional titles and the alignment of their qualifications with sub-
ject requirements, ensuring that the turnover strategy supports educational quality stand-
ards. The amount of funds allocated to special groups must comply with the minimum 
guarantee standards stipulated by relevant policies and regulations for disabled students 
and migrant children, ensuring that the optimization process remains within ethically ac-
ceptable boundaries. 

The coupling relationship among decision variables can have significant effects on 
the range of feasible domain of the optimization model. The adjustment of the total 
amount of resources needs to coordinate with the turnover rate of teachers to avoid the 
scenario where there are sufficient funds for operation, but a structural shortage of teach-
ers. An increase in the input proportion for special groups may reduce the availability of 
resources in other dimensions, assuming that priority weights are incorporated into the 
model's objective function. The model employs a nonlinear programming framework to 
capture the dynamics of constraints among variables. For example, the fluctuation of the 
student-teacher ratio due to teacher mobility must consider, and meet, the threshold 
standards from the education department. The design of dynamically defined decision 
variables has policy constraints that embody rigidity and can have operational flexibility 
that ensures the generated optimization strategy reflects the real structure of the educa-
tional ecosystem, while advancing the system towards the fairness Pareto front [6]. 

3.1.2. Constraint Conditions 
The design of constraint conditions needs to ensure that the optimization strategy of 

educational resources complies with the requirements of policies and regulations, re-
source rigidity and the bottom line of educational quality. The model takes the minimum 
standard of per-student funding, the threshold of the student-teacher ratio, and the re-
source guarantee rate of special groups as hard constraints, and defines the constraint of 
per-student funding as formula (9): 

𝐹𝐹𝑘𝑘 ≥ 𝜆𝜆 ∙ 𝐹𝐹𝑠𝑠𝑡𝑡𝑠𝑠             (9) 
Among them, 𝐹𝐹𝑘𝑘 is the actual value of per-student funds in the Kth region, 𝐹𝐹𝑠𝑠𝑡𝑡𝑠𝑠 is 

the national standard value, and 𝜆𝜆 is the correction coefficient of regional economic dif-
ferences to prevent insufficient resource supply in economically backward areas. The con-
straint of the teaching staff structure requires that the teacher turnover rate 𝜏𝜏 satisfy 
𝜏𝜏𝑚𝑚𝑖𝑖𝑛𝑛 ≤ 𝜏𝜏 ≤ 𝜏𝜏𝑚𝑚𝑠𝑠𝑥𝑥  to avoid fluctuations in teaching quality caused by excessive mobility. 
The lower limit constraint on the proportion of resources of special groups ensures that 
the basic rights and interests of groups such as students with disabilities and migrant chil-
dren are not eroded by the optimization process. 

Soft constraints aim to maintain a dynamic balance in resource allocation while guid-
ing the system toward progressive improvements in educational fairness. The total 
amount difference of educational resources among regions needs to meet the improve-
ment target 𝐺𝐺′ ≤ 𝐺𝐺𝑡𝑡𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡  of the Gini coefficient of spatial balance to avoid the expansion 
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of regional gaps after optimization. The group coverage index C needs to meet the non-
decreasing condition 𝐶𝐶𝑡𝑡+1 ≥ 𝐶𝐶𝑡𝑡 to ensure the continuous improvement of the resource 
access ability of vulnerable groups. To resolve potential conflicts among soft constraints, 
the model introduces relaxation variables that allow limited constraint violation within 
an acceptable tolerance range. The constraint conditions are embedded into the objective 
function through the Lagrange multiplier method to generate the Pareto optimal solution 
set within the feasible domain. 

3.2. Deep Reinforcement Learning Optimization Algorithm 
3.2.1. State Space 

The state space construction must accurately reflect the dynamic characteristics and 
equity evolution process of the educational resources allocation system as illustrated in 
Figure 1. The state-variable selection takes the form of three stages: the resource supply; 
the gap in demand; and policy constraints (with core parameters that capture the dispar-
ities in per-student funding in counties, the matching rate of teachers to disciplines, and 
the delay period for assessing changes to the resource use status for specialised groups). 
The time series characteristics are contained in the historical resource allocation path 
while trend indicators of the time series all include the coefficient of variation of the stu-
dent-teacher ratio and the three-year moving average of the spatial Gini coefficient-all of 
these are useful to help the method in the long-term evolution law of fairness. The state 
variable must test independence and information completeness. In this regard, and to 
remedy concerns about multicollinearity, principal component analysis is used to reduce 
the data set so that the dimension of the state space is appropriate to the complexity of the 
problem [7]. 

 
Figure 1. State Space Model. 

The discretization of the state space directly impacts the convergence efficiency of 
the algorithm and the precision of policy generation. Continuous variables such as the 
utilization rate of school buildings need to be discretized in segments. The division of 
discrete intervals should comply with the classification standards of the education depart-
ment to avoid artificially cutting and distorting the distribution characteristics. Categori-
cal variables such as the level of policy support are expanded using one-hot encoding. In 
some observable scenarios, a state estimator is constructed using a long short-term 
memory network to reconstruct the complete system state from the local observed data. 
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3.2.2. Action Space 
The action space definition should clearly match the dimensions of decision-making 

control mentioned in educational resource allocation in order to ensure that the generated 
strategies will be actionable and aligned with policy. This principle is illustrated in Figure 
2. The action variables were grouped into three categories: the adjustment of the coeffi-
cient of resource re-allocation; targeted flow strategies for teachers; and the intensity of 
preferential policies for special groups, to correspond respectively to total regulation of 
resources, allocation of human resources and a compensation mechanism for vulnerable 
groups. Furthermore, resource re-allocation actions need to be carried out with budget 
constraints and regional economic carrying thresholds in mind to mitigate potential fiscal 
imbalances that could arise from cross-regional resource allocations. Teacher mobility is 
an action factor that considers the alignment between teachers' professional titles and sub-
ject-area shortages to ensure that mobility plans support educational quality, to ensure 
that the mobility plan does not produce teaching quality issues. Policy inclination actions 
will also need to verify their agreements or compatibility with educational regulations to 
avoid provoking doubts about fairness from other groups due to excessive compensation 
practices. The discretization of the action space adopts a hierarchical design. Continuous 
variables, such as the proportion of fund transfer, are divided according to the minimum 
adjustment granularity allowed by the policy, and categorical variables, such as the direc-
tion of teacher allocation, are encoded based on the topological structure of the adminis-
trative region [8]. 

 
Figure 2. Action Space. 

3.2.3. Network Structure 
The Actor network architecture's design pertains to the generation and feasibility 

constraints of educational resource allocation strategies. The input layer integrates the re-
gional distribution map of resources with encoded policy constraints, while the feature 
extraction module utilizes a Graph Attention Network (GAT) to model the inter-county 
dependencies in resource flows (i.e., the dependent relationship of the counties). The out-
put layer is bifurcated into discrete and continuous action branches. The discrete branches 
undertake category decisions (e.g. the directional scheduling of teaching staff), while the 
continuous branches (a.k.a. the continuous action branching) outputs the amount for re-
distributing the funding coefficient's adjustment. The Critic network constructs a multi-
dimensional value assessment system to quantify the long-term ramifications of the con-
figuration strategies. The state value estimator adopts a multi-head attention mechanism 
to disentangle the contributions of sub-objectives such as educational equity, resource ef-
ficiency, and policy adherence. The input of the network combines the current allocation 
status of the funding and policy characteristics produced by the Actor network, while the 
temporal convolutional layer resides to uncover the lag period characteristics of the edu-
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cational input-output effect. The value function estimation module integrates the uncer-
tainty perception mechanism and models the risk distribution under different policy im-
plementation intensities through quantile regression. The Actor-Critic interaction design 
is embedded with the adversarial training paradigm. The Critic network periodically gen-
erates adversarial examples simulating extreme resource allocation scenarios to enhance 
the decision robustness of the Actor network in dealing with extreme resource shortage 
scenarios [9]. The structure of the Actor-Critic network is shown in Figure 3. 

 
Figure 3. Actor-Critic Network Structure. 

3.2.4. Training Mechanism 
The priority experience replay mechanism conveys the sampling learning weight ac-

cording to the regional imbalance characteristics of educational resource allocation. The 
mechanism is depicted in Figure 4, which gives priority to interaction data in resource-
scarce areas. The sampling probability is a dynamic measurement that equally considers 
the temporal difference error and the importance of enhancing the algorithm's capacity 
for strategy optimization for lower resource density areas. The sample priority content 
reflects the joint criteria of the per-student resource gap degree and the potential for strat-
egy improvement within the region. In the sparse reward scenario, hindsight experience 
replay technology is adopted to reconstruct the objective function enabling empirical tra-
jectories that fail to reach equilibrium to be restructured into meaningful training samples. 
The buffer area design employs a spatial fragmentation strategy, creating independent 
storage structures based on the economic level of the counties-of-samples and the ade-
quacy of educational resources, so as to prevent samples from high-resource regions from 
biasing the model's learning trajectory. 

 
Figure 4. Priority Experience Replay. 
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4. Experimental Verification and Analysis 
4.1. Data Preparation 

The experimental verification of the optimization algorithm for educational resource 
allocation requires the construction of a dataset covering multi-dimensional spatiotem-
poral characteristics. The data source integrates the educational panel data of 2,854 coun-
ties in China from 2015 to 2020, covering core indicators such as the student-teacher ratio, 
per-student educational expenditure, and the number of special education schools. It sim-
ultaneously connects GIS geographic coordinate data to depict the spatial distribution 
characteristics of schools and the impact of terrain obstacles. Table 1 shows the structure 
of the dataset, including county codes, timestamps, statistical fields of educational re-
sources, and geospatial attributes. The data collection is derived from the public statistical 
yearbooks of the Ministry of Education and the interpretation results of high-resolution 
remote sensing images. Spatio-temporal correlation modeling relies on the vectorized 
data of county-level administrative boundaries to construct the topological relationship 
matrix of cross-regional resource flows [10]. 

Table 1. Structure of Educational Resource Allocation Dataset. 

Field category Specific indicators Data source 
County-level 
identification 

Administrative division code and year National Bureau of Statistics 

Educational 
resources 

Student-teacher ratio, per-student 
funding, and the number of special 

schools 

Statistical Yearbook of the 
Ministry of Education 

Geographical 
space 

School coordinates, terrain obstacle 
index 

Interpretation of Remote 
Sensing Images and DEM 

analysis 

Policy constraints 
Teacher-student ratio threshold, cross-

provincial dispatch ban sign 
Text mining of local education 

regulations 
Data preprocessing incorporates specialized procedures to handle the spatio-tem-

poral heterogeneity and missingness inherent in educational statistics. Missing values are 
imputed using the spatio-temporal Kriging interpolation method, which performs collab-
orative prediction by integrating geospatial autocorrelation with temporal trends, and 
conducts collaborative prediction by combining geospatial autocorrelation and the trend 
of time series to ensure the continuity of county-level panel data. The principle of this 
method is shown in Figure 5. Feature standardization applies Min-Max normalization 
processing to eliminate dimensional differences, and implements logarithmic transfor-
mation for right-biased distribution indicators such as educational funds to improve the 
data distribution characteristics. Geographic coordinates are transformed into the Univer-
sal Transverse Mercator (UTM) projection system, and the terrain obstacle index is gener-
ated by calculating the slope and accessibility coefficient based on the digital elevation 
model. The preprocessed dataset facilitates feature extraction for the graph attention 
mechanism in the network structure and ADAPTS to the modeling requirements of spatial 
association rules in the Actor network policy generation module. 
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Figure 5. Spartoi-Temporal Kriging Interpolation Method. 

The data construction method follows the paradigm of spatial econometrics. Raw 
data is cleaned to remove anomalies arising from administrative boundary adjustments, 
and the time series alignment processing ensures the comparability of panel data. Geo-
spatial analysis uses the ArcGIS platform to calculate the transportation cost matrix of 
educational resources between counties, providing terrain constraint parameters for the 
action mask module in the strategy network. Data division retains 10% of the samples as 
the adversarial test set to simulate extreme resource allocation scenarios to verify the ro-
bustness of the model. 

4.2. Fairness Assessment Experiment 
The fairness evaluation of educational resource allocation strategies requires the con-

struction of a multi-dimensional quantitative index system. The Gini coefficient measures 
the balance of per-student educational expenditure and teacher allocation among counties, 
and the Theil index decomposes the sources of regional differences to the contribution 
rates within and between groups in the eastern, central and western regions. Table 2 
shows the calculation methods and data support of the fairness assessment indicators. The 
calculation of the Gini coefficient relies on the preprocessed panel data of per-student 
funding in county areas, and the Theil index decomgenerates and integrates the results of 
geospatial clustering. The evaluation is conducted within a counterfactual analysis frame-
work to compare the effect differences between the algorithm generation strategy and the 
historical actual configuration plan, and to isolate the net effect of strategic interventions 
by controlling for economic development level and population density. 

Table 2. Fairness Evaluation Indicators and Data Support. 

Evaluation indicators Calculation method Data source 
Gini coefficient of 

per-student funding 
The measure of unbalance degree 

based on the Lorentz curve 
Preprocessed county-level 

panel data 

Teaching staff Tel 
Index 

Group difference decomposition 
model 

Clustering results of the 
Educational Statistical 

Yearbook 
Coverage rate of 
special education 

The number of special schools/the 
number of school-age population 

Special education census data 
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The experimental design simulates the effect of resource allocation under different 
policy priorities. The regional comparative experiment divided three types of terrain units: 
plain area, mountainous and hilly area, and border area, and calculated the dynamic 
changes of the coverage rate of special education schools and the coefficient of variation 
of the student-teacher ratio. Table 3 presents the classification criteria of terrain units and 
the baseline data of resource allocation. The samples of mountainous and hilly areas in-
clude counties where the GIS terrain obstacle index is higher than the threshold. Fairness 
verification incorporates scenario testing for cross-provincial coordination strategies. In 
the cross-regional scheduling strategy generated by the Actor network, The ratio of mar-
ginal benefit gains in receiving counties to efficiency losses in contributing counties is 
computed. The visualization of the evaluation results adopts spatial autocorrelation anal-
ysis. The Moran index detects the spatial spillover effect of the resource allocation strategy, 
and the kernel density estimation reveals the spatial agglomeration characteristics of high-
fairness counties. 

Table 3. Classification of Terrain Units and Baseline of Resource Allocation. 

Terrain type Classification criteria 
Baseline value of the student-

teacher ratio 

Plain area The terrain obstacle index is ≤ 0.3 
Mean ± standard deviation of the 

county 
Mountainous and 

hilly areas 
The terrain obstacle index is > 0.3 

and ≤ 0.7 
Adjustment of specific terrain 

correction coefficients 

Border area 
Counties within 50 kilometers of 

the national border 
Policy compensation weighted 

value 
The integrated adversarial test set is used to evaluate policy stability and to simulate 

the ability of the allocation strategy to maintain fairness under conditions of extreme re-
source scarcity. The geospatial analysis module calculates the educational accessibility co-
efficient among counties after resource allocation and assess the extent of benefits realized 
by vulnerable areas in combination with topographic obstacle data. Detect and track 
changes in county-level rankings over a three-year period following the implementation 
of temporal fairness monitoring strategies to assess whether disparities in educational re-
source allocation have been reduced over time. The experimental conclusion supports the 
optimization direction of the Critic network value assessment module in the network 
structure and verifies the effectiveness of the two-stream attention mechanism for multi-
objective trade-offs. 

5. Conclusion 
The quantitative system and dynamic optimization model of educational equity con-

structed in this study provide a brand-new perspective for solving the problem of re-
source allocation. The multi-dimensional index system breaks through the limitations of 
traditional evaluation dimensions, and the improved Gini coefficient algorithm signifi-
cantly enhances the accuracy of regional difference analysis. The deep reinforcement 
learning framework effectively captures the complex correlations in the educational eco-
system and realizes the intelligent optimization of resource allocation strategies. Experi-
mental verification shows that this model can not only accurately diagnose the current 
situation of educational equity, but also predict the long-term effects of different policy 
interventions. The research results have important reference value for improving the ed-
ucation governance system, and its methodological framework can be extended to the 
field of public services. Future research can deepen cross-cultural comparative analysis, 
explore the coupling mechanism of educational resource flow and population migration, 
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promote the development of educational equity monitoring towards real-time and intel-
ligent directions, and provide sustained guidance for the development of a more resilient 
and equitable educational ecosystem. 
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