

Article

2025 International Conference on Natural Sciences, Agricultural Economics, Biomedicine and Sustainable Development (AEBSD 2025)

New Generation Drug Delivery Systems: Nanocarriers, Smart Hydrogels, and Organelle Targeting Technologies

Zhichao Wang^{1,*}

¹ St George's College, University of London, London, United Kingdom

* Correspondence: Zhichao Wang, St George's College, University of London, London, United Kingdom

Abstract: The field of drug delivery has undergone significant advancements with the emergence of novel technologies such as nanocarriers, smart hydrogels, and organelle-targeting systems. These innovations enable more precise, efficient, and controlled delivery of therapeutic agents, enhancing drug efficacy while minimizing side effects. Nanocarriers, including lipid nanoparticles and polymeric nanoparticles, improve drug solubility and stability, allowing for controlled release and targeted delivery to specific tissues or cells. Smart hydrogels, responsive to environmental stimuli like pH and temperature, offer sustained drug release and site-specific targeting, making them ideal for chronic disease treatment. Organelle-targeting technology, which directs drugs to cellular organelles such as mitochondria and lysosomes, has emerged as a cutting-edge approach to precision medicine. These technologies hold the potential to address challenges like poor drug solubility, non-specific distribution, and treatment resistance. However, challenges remain, including biocompatibility, long-term stability, and scalability. Future research will focus on overcoming these hurdles and integrating these technologies to create personalized and efficient drug delivery systems. The development of multi-functional, hybrid systems combining nanocarriers, hydrogels, and organelle targeting will pave the way for more effective, targeted therapies.

Keywords: drug delivery; nanocarriers; smart hydrogels; organelle targeting; precision medicine

Received: 03 November 2025

Revised: 24 November 2025

Accepted: 26 December 2025

Published: 03 January 2026

Copyright: © 2026 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (<https://creativecommons.org/licenses/by/4.0/>).

1. Introduction

Drug delivery systems (DDS) are essential for delivering therapeutic agents with precision, maximizing efficacy while minimizing side effects. Traditional drug delivery faces challenges due to poor solubility, stability, and bioavailability of many drugs, often leading to non-specific distribution and systemic side effects [1]. To address these issues, significant research has focused on developing targeted and controlled drug delivery technologies. Among the most promising approaches are nanocarriers, smart hydrogels, and organelle targeting technologies.

Nanocarriers, including lipid nanoparticles, polymeric nanoparticles, and nanocapsules, enhance drug solubility, stability, and provide controlled release [2]. Their small size allows efficient navigation through biological barriers, enabling targeted delivery to tissues or cells. Nanocarriers can be engineered to respond to stimuli like pH or temperature, making them ideal for disease-specific environments, especially beneficial in cancer treatment by reducing damage to healthy cells.

Smart hydrogels, capable of responding to environmental stimuli such as pH, temperature, or light, offer precise control over drug release. Their biocompatibility and

ability to ensure drug release only when needed make them valuable for diseases requiring controlled drug delivery, such as diabetes and cancer [3]. Recent advancements have improved their stability and efficiency, making them increasingly viable for clinical applications.

Organelle targeting technology directs drugs to specific cellular organelles like mitochondria or lysosomes, improving treatment efficacy and reducing side effects by delivering drugs directly to their site of action within cells. This is particularly relevant in treating diseases like cancer and neurodegenerative disorders, where organelles play critical roles [4]. By using nanoparticles designed to target specific organelles, drugs can be released exactly where needed, enhancing therapeutic outcomes.

As these technologies evolve, they promise to revolutionize drug delivery, offering solutions to challenges like poor solubility and non-specific distribution. The integration of nanocarriers, smart hydrogels, and organelle targeting presents exciting opportunities for developing highly effective, personalized drug delivery systems. However, challenges remain regarding biocompatibility, stability, and scalability. Ongoing research is crucial to overcoming these hurdles and realizing the full potential of these innovative drug delivery technologies. The following sections will explore the development trends, current applications, and future directions of these technologies.

2. Trends in Nanocarrier Technology for Drug Delivery

2.1. Evolution and Classification of Nanocarriers

Nanocarriers have significantly advanced, evolving from basic lipid-based systems to more complex, multifunctional structures. Liposomes, one of the first nanocarriers, were developed to enhance the solubility of poorly water-soluble drugs. While effective, liposomes had limitations, such as instability and rapid clearance from the body. This led to the development of polymeric nanoparticles, which offered better stability and control over drug release. Polymeric nanoparticles, made from biodegradable polymers, are highly favored due to their ability to encapsulate both hydrophilic and hydrophobic drugs.

Recent developments have introduced more advanced nanocarriers, such as nanocapsules and nanocrystals. Nanocapsules feature a core-shell structure that protects the drug from degradation, while nanocrystals improve the dissolution rate of poorly soluble drugs, increasing their bioavailability [5]. Additionally, hybrid nanocarriers, combining organic and inorganic materials, have been developed to further enhance drug encapsulation, stability, and release profiles, overcoming challenges related to solubility and stability.

2.2. Development Trends in Nanocarrier Technology

Key trends in nanocarrier technology focus on improving drug loading capacity, targeted delivery, and reducing side effects. One significant advancement is the development of nanocarriers with higher drug loading efficiency. Optimized formulations and novel materials have enabled researchers to increase the amount of drug loaded into a carrier while maintaining small particle sizes. This high loading efficiency reduces side effects and ensures more effective treatment, particularly for drugs that need to be administered in high doses or over prolonged periods.

Targeted drug delivery is another critical trend. Nanocarriers can be engineered with surface modifications, such as ligands or antibodies, that bind to specific receptors on target cells, such as cancer cells or inflamed tissues. This targeted approach ensures that the therapeutic agent is delivered directly to the desired site, minimizing damage to healthy tissues. Additionally, the development of stimuli-responsive nanocarriers is gaining momentum. These carriers release their payload in response to specific environmental factors, such as pH, temperature, or enzymes, offering more precise control over drug delivery [6]. This ability allows for site-specific release, improving therapeutic outcomes and reducing systemic toxicity.

To provide a clearer comparison of the various nanocarrier types and their applications, Table 1 summarizes the key characteristics, advantages, and challenges of different nanocarriers.

Table 1. Comparison of Different Types of Nanocarriers and Their Applications in Drug Delivery.

Nanocarrier Type	Characteristics	Advantages	Applications
Lipid Nanoparticles	Lipid bilayer, used for hydrophobic drugs	Improved solubility, biocompatible	Drug delivery, vaccine carriers
Polymeric Nanoparticles	Biodegradable, hydrophilic and hydrophobic drug encapsulation	High stability, controlled release	Cancer therapy, gene delivery
Nanocapsules	Core-shell structure	Protects drug from degradation, better stability	Targeted drug delivery, vaccines
Nanocrystals	Solid drug particles	Improved dissolution rate, bioavailability	Treatment of poorly soluble drugs
Hybrid Nanocarriers	Combination of organic and inorganic materials	Enhanced drug loading, stability, and multifunctionality	Imaging, targeting, co-delivery systems

2.3. Challenges and Solutions in Nanocarrier Technology

Despite the advancements, several challenges remain in the widespread clinical application of nanocarriers. Biocompatibility is a primary concern. Nanocarriers must not provoke immune responses, toxicity, or organ accumulation. Researchers are exploring biodegradable and biocompatible materials like natural polymers and lipids to improve safety. Surface modifications, such as polyethylene glycol (PEG) coating, are used to reduce immune recognition and extend circulation time.

Long-term stability is another significant challenge, especially for lipid-based and polymeric nanocarriers, which can degrade or aggregate over time. Ensuring that nanocarriers remain stable during storage, transport, and administration is crucial. Solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) have been developed to provide improved stability and controlled release [7]. Additionally, the use of stabilizers and antioxidants in formulations can enhance long-term stability.

Production costs are another barrier to the commercialization of nanocarriers. Scaling up production to meet clinical demand is complex and costly, particularly in achieving uniform particle size and drug loading. Researchers are working on optimizing manufacturing processes, such as solvent evaporation and continuous flow systems, to reduce costs while maintaining quality. Regulatory concerns also need to be addressed before nanocarriers can be widely used in clinical settings.

2.4. Future Directions in Nanocarrier Technology

Looking forward, the future of nanocarrier technology lies in multifunctional, hybrid carriers that combine the strengths of various materials and technologies. Hybrid nanocarriers, which integrate organic and inorganic components, offer enhanced drug loading, stability, and multifunctionality, such as imaging or targeting capabilities. These hybrid systems could allow for the co-delivery of multiple drugs or therapeutic agents, providing a comprehensive approach to disease treatment.

Personalized medicine will also play an increasingly vital role in nanocarrier development. Nanocarriers can be engineered to respond to individual molecular markers, allowing for more tailored drug delivery. This is particularly valuable for

treating complex diseases such as cancer and genetic disorders, where targeted, personalized therapies are essential.

In conclusion, nanocarrier technology continues to evolve and hold great promise for improving drug delivery. High drug loading, targeted delivery, and stimuli-responsive carriers are paving the way for more effective and personalized treatments. However, challenges such as biocompatibility, stability, and production costs must be addressed. As research progresses, the integration of nanocarriers with other advanced technologies, such as smart hydrogels and organelle targeting, will further enhance the precision and efficacy of drug delivery systems.

3. Advances and Challenges in Smart Hydrogels for Drug Delivery

3.1. Principles and Functions of Smart Hydrogels

Smart hydrogels, also known as stimuli-responsive hydrogels, are unique materials that can undergo reversible changes in response to external environmental factors such as pH, temperature, light, or ionic strength. This behavior allows them to control drug release in a precise manner. The principle behind smart hydrogels lies in the network structure of polymers that can swell or shrink when exposed to specific stimuli. For example, a pH-responsive hydrogel can swell or contract in response to the acidic or basic environment of the target tissue, leading to the controlled release of encapsulated drugs.

In drug delivery, these hydrogels offer several advantages over traditional systems. They can provide sustained and controlled release, reducing the frequency of administration and minimizing side effects. Smart hydrogels also improve the bioavailability of drugs by enabling site-specific drug delivery. For example, by designing hydrogels that respond to the local pH of a tumor microenvironment, the release of chemotherapy drugs can be triggered precisely where needed, thereby increasing therapeutic efficacy while limiting systemic toxicity. These properties make smart hydrogels an ideal solution for diseases that require precise drug delivery, such as cancer, diabetes, and rheumatoid arthritis.

3.2. Technological Development Trends in Smart Hydrogels

The development of smart hydrogels has focused on enhancing their functionality, biocompatibility, and responsiveness to a variety of stimuli. One significant trend is the incorporation of multiple stimuli-responsive elements into a single hydrogel system, creating hydrogels that can respond to more than one environmental trigger. This multi-responsive behavior allows for more sophisticated control over drug release. For example, a hydrogel may be engineered to respond to both pH and temperature, making it suitable for a wider range of applications.

Another key development is the functionalization of hydrogels to improve drug loading and release profiles. Functionalized smart hydrogels can be designed to not only respond to environmental changes but also to enhance drug encapsulation efficiency. By introducing functional groups such as hydrophobic or electrostatic interactions, researchers can increase the amount of drug loaded into the hydrogel and improve its stability. Additionally, advances in crosslinking techniques and the use of natural polymers have improved the mechanical strength and durability of these hydrogels, enabling their use in a broader range of medical applications.

A particularly promising application of smart hydrogels in drug delivery is the use of hydrogels in combination with other technologies, such as nanoparticles or nanocarriers. Hybrid systems that integrate smart hydrogels with nanoparticles can provide enhanced therapeutic effects by enabling the controlled release of drugs while protecting the encapsulated agent from premature degradation [8]. For example, nanoparticles can be used to load hydrophobic drugs, while the hydrogel matrix responds to environmental cues to release the drug at the target site. This combination allows for

improved drug stability, better control over release kinetics, and enhanced therapeutic outcomes.

3.3. Current Challenges and Future Prospects

Despite the significant advances in smart hydrogel technology, several challenges remain in achieving their full clinical potential. One of the main challenges is the stability of the hydrogels, particularly *in vivo*. While hydrogels may perform well in laboratory conditions, their behavior in biological environments can be unpredictable. Issues such as gel degradation, leaching of the encapsulated drug, and changes in the mechanical properties of the hydrogel over time can affect their effectiveness. Researchers are working on improving the stability of hydrogels by developing more robust crosslinking methods, using biocompatible materials, and ensuring that the hydrogel can maintain its integrity over extended periods.

Biodegradability is another key concern. Smart hydrogels must degrade in a controlled manner after fulfilling their therapeutic role to avoid any adverse effects or accumulation in the body. However, ensuring that hydrogels degrade at an appropriate rate while still maintaining their function as drug carriers presents a significant challenge. The use of natural polymers, such as alginate, chitosan, and hyaluronic acid, is being explored as a solution to this issue, as these materials tend to degrade more predictably in biological systems.

The diversity and complexity of the stimuli-response mechanisms in smart hydrogels also pose challenges. While hydrogels that respond to a single stimulus are already in use, developing systems that respond to multiple factors (e.g., pH, temperature, light) can be more difficult to optimize [9]. Moreover, achieving precise control over the drug release rate in response to these multiple stimuli requires advanced design strategies and a better understanding of the interactions between the hydrogel network and the stimuli.

Another challenge in the clinical translation of smart hydrogels is the regulatory approval process. Hydrogels used for drug delivery must meet strict safety and efficacy standards before they can be approved for clinical use [10]. This includes demonstrating the biocompatibility, stability, and long-term safety of the hydrogel system. Additionally, the complexity of hybrid systems, such as those integrating nanoparticles or other carriers, requires rigorous testing to ensure that there are no unforeseen interactions between the components.

In order to compare the different types of stimuli-responsive smart hydrogels, their drug release control, advantages, and challenges, Table 2 provides a concise overview.

Table 2. Comparison of Stimuli-Responsive Smart Hydrogels.

Hydrogel Type	Stimuli Responded To	Drug Release Control	Advantages	Challenges
pH-Responsive Hydrogel	pH Change	Drug release at acidic environments	Targeted release for cancer therapy	Limited stability in certain environments
Temperature-Responsive Hydrogel	Temperature Change	Controlled release based on temperature fluctuations	Ideal for localized delivery at inflammation sites	Degradation under prolonged use
Multi-Responsive Hydrogel	pH, Temperature, Light	Combination of stimuli for precise control	Enhanced control and flexibility	Complexity in formulation and control

Hybrid Hydrogel-Nanoparticle System	pH, Temperature, Enzyme	Enhanced drug release with nanoparticles	Increased drug loading, stability, and efficiency	Manufacturing complexity, regulatory hurdles
-------------------------------------	-------------------------	--	---	--

4. Future Directions in Organelle Targeting for Drug Delivery

4.1. The Rise of Organelle Targeting

Organelle targeting is an emerging field in drug delivery that aims to direct therapeutic agents to specific cellular organelles, such as mitochondria, lysosomes, and the nucleus [11]. These organelles are crucial in many cellular processes and are involved in various diseases. For example, mitochondrial dysfunction is associated with cancer and neurodegenerative disorders, while lysosomal defects lead to diseases like lysosomal storage disorders. By targeting these organelles, drugs can be delivered precisely to the site of action, enhancing efficacy and reducing off-target effects.

Advances in nanotechnology have enabled organelle-specific drug delivery. Nanocarriers such as lipid nanoparticles, polymeric nanoparticles, and nanocrystals are engineered to carry drugs and bind to organelles. These nanocarriers can be modified with ligands or peptides that recognize specific receptors or markers on the surface of organelles, allowing for highly selective drug delivery. This method enhances treatment efficacy and minimizes systemic toxicity compared to traditional drug delivery systems.

4.2. Technological Trends in Organelle Targeting

The trend in organelle-targeted drug delivery is toward improving the precision of targeting and expanding the range of organelles that can be targeted. Mitochondrial targeting is one of the most advanced areas. Mitochondria are involved in energy production, apoptosis, and reactive oxygen species (ROS) generation, making them ideal targets for drugs treating cancer and neurodegenerative diseases. Nanocarriers are modified with lipophilic cations to cross the mitochondrial membrane and release their payload directly into the organelle, improving the efficacy of anticancer drugs and antioxidants.

Lysosomal targeting is another growing trend, with nanocarriers designed to release drugs in a controlled manner once inside the lysosome, taking advantage of the organelle's acidic environment [12]. pH-responsive nanocarriers have shown potential for treating lysosomal dysfunction-related diseases [13]. Additionally, targeting the nucleus for gene therapy applications, using tools like CRISPR-Cas9, and the endoplasmic reticulum for diseases like cystic fibrosis are gaining attention.

Recent advances in organelle-specific delivery have employed diverse ligands and carriers, as summarized in Table 3.

Table 3. Strategies and applications of organelle-targeted drug delivery systems.

Organelle	Targeting Ligand/Strategy	Carrier Type	Stimuli-Responsive?	Disease Application	Key Advantages
Mitochondria	TPP, SS peptides	Lipid NPs, Polymeric NPs	pH/redox	Cancer, Neurodegeneration	Bypasses efflux, enhances apoptosis
Lysosome	Mannose-6-phosphate, pH-sensitive polymers	Polymeric NPs, Micelles	pH	Lysosomal storage disorders	Enzyme replacement therapy

Nucleus	NLS peptides	Viral vectors, Gold NPs	-	Gene therapy (e.g., CRISPR)	Direct genome editing
Endoplasmic Reticulum	KDEL peptide	Liposomes	Redox	Cystic fibrosis, Protein misfolding diseases	Modulates UPR

4.3. Technological Challenges and Solutions

Despite the potential of organelle-targeted drug delivery, several challenges remain. One of the main issues is improving targeting precision. Nanocarriers must be designed to efficiently reach the intended organelle without interacting with other cellular components [14]. Overcoming the complexity of intracellular trafficking and ensuring accurate organelle targeting remains a challenge. Multi-targeting strategies and advanced surface engineering can improve targeting precision by modifying nanocarriers to bind to multiple receptors or markers.

Non-specific toxicity is another challenge, as nanocarriers may accumulate in non-target tissues, causing side effects. To address this, researchers are developing biocompatible and biodegradable materials that minimize harmful accumulation. Surface modifications, such as the use of polyethylene glycol (PEG), can reduce immune recognition and extend circulation time, improving targeting accuracy and reducing toxicity.

Ensuring controlled drug release within the organelle is also critical. Drugs must be released at the right time and place to exert their therapeutic effects without causing damage to the organelles [15]. Stimuli-responsive nanocarriers, such as those that release drugs based on pH or temperature changes, are being developed to address this issue.

4.4. Future Prospects

Organelle-targeted drug delivery has the potential to revolutionize treatment for complex diseases, especially those that are resistant to conventional therapies. As targeting precision improves, more diseases can be treated with reduced side effects. Future advancements will likely combine organelle targeting with other emerging technologies, such as gene therapy, immunotherapy, and personalized medicine, to provide more comprehensive treatment options. By delivering drugs directly to the affected organelles, treatment efficacy will be enhanced, and side effects minimized, offering new hope for patients with limited treatment options. As the field evolves, organelle-targeted drug delivery could become a cornerstone of personalized and precision medicine.

5. Future Trends and Outlook in Drug Delivery Systems

5.1. The Trend of Multitechnology Integration

The future of drug delivery systems is marked by the integration of multiple technologies to create more efficient, precise, and versatile platforms. Nanocarriers, smart hydrogels, and organelle-targeting technologies are increasingly being combined to achieve optimized drug delivery. As summarized in Tables 1-3, these components offer complementary advantages in carrier design, stimulus responsiveness, and subcellular precision. By integrating these systems, drugs can be delivered with greater specificity, minimizing side effects and improving therapeutic outcomes.

For example, hybrid systems that combine nanocarriers with smart hydrogels can provide controlled and sustained release of drugs, ensuring that the therapeutic agents are delivered over an extended period. Additionally, incorporating organelle-targeting technology into these systems allows for even greater precision, as drugs can be delivered

directly to the organelles where they are most needed, such as mitochondria in cancer cells or lysosomes in neurodegenerative diseases. This combination of nanocarriers, hydrogels, and organelle targeting could dramatically enhance the effectiveness of drug delivery, leading to improved outcomes for patients and reduced systemic toxicity.

5.2. Personalized and Precision Drug Delivery

As precision medicine continues to advance, personalized drug delivery systems are becoming an increasingly important focus. Precision medicine involves tailoring treatment to individual patients based on their genetic makeup, lifestyle, and specific disease characteristics. With the development of advanced drug delivery technologies, such as nanocarriers and stimuli-responsive hydrogels, personalized drug delivery is becoming a reality.

These technologies can be engineered to respond to specific biomarkers or genetic profiles, allowing for more targeted and effective drug delivery. For example, nanocarriers could be designed to target specific tumor markers in cancer patients, ensuring that chemotherapy drugs are delivered only to cancer cells, minimizing damage to healthy tissues. Similarly, smart hydrogels could be engineered to release drugs only in the presence of specific disease markers, enhancing the efficacy of treatment while reducing side effects. The integration of personalized drug delivery with advancements in gene therapy and genomics will enable even more customized and effective treatments, improving patient outcomes and quality of life.

5.3. The Integration of Emerging Technologies

The future of drug delivery will be driven by the convergence of several cutting-edge technologies, including artificial intelligence (AI), nanotechnology, and biotechnology. AI has the potential to revolutionize drug delivery by optimizing the design of drug delivery systems and predicting patient-specific responses to therapy. Machine learning algorithms can analyze vast amounts of data to identify the most effective drug formulations, dosing regimens, and delivery methods for individual patients.

Nanotechnology plays a critical role in drug delivery systems, providing the foundation for advanced carriers that can deliver drugs precisely and efficiently. The continued development of nanocarriers, coupled with advances in nanomaterials and surface modifications, will enable even greater control over drug release and targeting.

Biotechnology is also contributing to the advancement of drug delivery systems. For instance, biologics such as monoclonal antibodies and gene therapies require specialized delivery systems to ensure their stability and targeted action. The integration of nanotechnology and biotechnology will facilitate the development of more effective biologic therapies, including those for rare genetic disorders and cancer.

Together, these technologies will enable the creation of more sophisticated, responsive, and personalized drug delivery systems. By combining AI's data-driven insights, nanotechnology's precision delivery capabilities, and biotechnology's cutting-edge therapies, future drug delivery systems will be more efficient, cost-effective, and tailored to the individual patient.

6. Conclusion

The rapid advancement of drug delivery technologies has significantly transformed the landscape of modern medicine. Through the integration of nanocarriers, smart hydrogels, and organelle-targeting technologies, drug delivery systems have become more precise, efficient, and capable of minimizing side effects. These technologies allow for highly targeted delivery of therapeutic agents, enhancing the efficacy of treatments, particularly in complex diseases like cancer, neurodegenerative disorders, and genetic conditions. By delivering drugs directly to the site of action, these systems reduce the need for high dosages and mitigate the risks associated with non-specific distribution.

As precision medicine continues to evolve, personalized drug delivery systems are becoming an essential aspect of healthcare. With the ability to tailor treatments based on an individual's genetic profile, lifestyle, and disease characteristics, drug delivery systems can be optimized for each patient, ensuring more effective therapies with fewer side effects. The combination of nanocarriers, stimuli-responsive hydrogels, and organelle-targeting systems has the potential to revolutionize the way we approach treatment, providing more targeted and less invasive alternatives to conventional methods.

The convergence of emerging technologies such as artificial intelligence, nanotechnology, and biotechnology will drive further innovation in drug delivery. AI will optimize the design and development of drug delivery systems, while nanotechnology and biotechnology will enable the creation of more sophisticated, responsive, and personalized systems. The integration of these technologies will lead to the development of next-generation drug delivery systems that are not only more efficient but also tailored to meet the unique needs of individual patients.

In conclusion, the future of drug delivery lies in the continued development and integration of advanced technologies that enhance precision, efficiency, and personalization. As these technologies evolve, they will play a pivotal role in improving patient outcomes, advancing the field of medicine, and paving the way for more effective treatments for a wide range of diseases.

References

1. A. Shah, S. Aftab, J. Nisar, M. N. Ashiq, and F. J. Iftikhar, "Nanocarriers for targeted drug delivery," *Journal of Drug Delivery Science and Technology*, vol. 62, p. 102426, 2021. doi: 10.1016/j.jddst.2021.102426
2. M. Keerikkadu, P. D. Bangera, V. K. Tippavajhala, and M. Rathnanand, "An Overview on Lipid Nanocapsules: Exploring the Role in Precision Cancer Treatment and Lymphatic Drug Distribution," *Advanced Pharmaceutical Bulletin*, vol. 15, no. 2, p. 248, 2025.
3. A. Saha, A. Khanna, A. Nair, B. S. Butola, N. Sharma, and N. Sharma, "Precision Beyond Pills: The Era of Implantable Microchips in Controlled Drug Delivery," *Journal of Biomedical Materials Research Part B: Applied Biomaterials*, vol. 113, no. 9, p. e35645, 2025. doi: 10.1002/jbm.b.35645
4. M. S. Karvandi, F. Sheikhzadeh Hesari, A. R. Aref, and M. Mahdavi, "The neuroprotective effects of targeting key factors of neuronal cell death in neurodegenerative diseases: The role of ER stress, oxidative stress, and neuroinflammation," *Frontiers in cellular neuroscience*, vol. 17, p. 1105247, 2023. doi: 10.3389/fncel.2023.1105247
5. Y. Liu, Y. Liang, J. Yuhong, P. Xin, J. L. Han, Y. Du, and Y. Ma, "Advances in nanotechnology for enhancing the solubility and bioavailability of poorly soluble drugs," *Drug design, development and therapy*, pp. 1469-1495, 2024. doi: 10.2147/dddt.s447496
6. D. Zhao, Y. Wei, J. Xiong, C. Gao, and D. Wang, "Response and regulation of the microenvironment based on hollow structured drug delivery systems," *Advanced Functional Materials*, vol. 33, no. 31, p. 2300681, 2023. doi: 10.1002/adfm.202300681
7. C. H. Tang, H. L. Chen, and J. R. Dong, "Solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) as food-grade nanovehicles for hydrophobic nutraceuticals or bioactives," *Applied Sciences*, vol. 13, no. 3, p. 1726, 2023.
8. Y. Fan, Q. Han, H. Li, X. Cai, B. Dyett, R. Qiao, and J. Zhai, "Recent Developments in Nanoparticle-Hydrogel Hybrid Materials for Controlled Release," *Advanced Science*, vol. 12, no. 35, p. e07209, 2025. doi: 10.1002/advs.202507209
9. S. Amirthalingam, A. K. Rajendran, Y. G. Moon, and N. S. Hwang, "Stimuli-responsive dynamic hydrogels: design, properties and tissue engineering applications," *Materials Horizons*, vol. 10, no. 9, pp. 3325-3350, 2023. doi: 10.1039/d3mh00399j
10. S. B. Fam, "Regulations for Hydrogels and Bioinks in Clinical Trials," In *Hydrogels and Bioinks in Tissue Engineering*, 2025, pp. 359-367. doi: 10.1007/978-3-031-90966-5_18
11. D. Singh, "Organelle targeted drug delivery: key challenges, recent advancements and therapeutic implications," *Endocrine, Metabolic & Immune Disorders-Drug Targets (Formerly Current Drug Targets-Immune, Endocrine & Metabolic Disorders)*, vol. 24, no. 13, pp. 1480-1487, 2024. doi: 10.2174/0118715303282573240112104035
12. A. A. Alhowyan, and G. I. Harisa, "From Molecular Therapies to Lysosomal Transplantation and Targeted Drug Strategies: Present Applications, Limitations, and Future Prospects of Lysosomal Medications," *Biomolecules*, vol. 15, no. 3, p. 327, 2025. doi: 10.3390/biom15030327
13. Y. Hao, X. Fan, X. Huang, Z. Li, Z. Jing, G. Zhang, and P. Wei, "Recovery of Lysosomal Acidification and Autophagy Flux by Attapulgite Nanorods: Therapeutic Potential for Lysosomal Disorders," *Biomolecules*, vol. 15, no. 5, p. 728, 2025. doi: 10.3390/biom15050728
14. J. Soukar, N. A. Peppas, and A. K. Gaharwar, "Organelle-targeting nanoparticles," *Advanced Science*, vol. 12, no. 7, p. 2411720, 2025.

15. M. U. Farooq, C. H. Lawrie, and N. N. Deng, "Solving Mazes of OrganelleTargeted Therapies with DNA Nanomachines," *Advanced Materials*, vol. 37, no. 39, p. 2508047, 2025.

Disclaimer/Publisher's Note: The views, opinions, and data expressed in all publications are solely those of the individual author(s) and contributor(s) and do not necessarily reflect the views of CPCIG-CONFERENCES and/or the editor(s). CPCIG-CONFERENCES and/or the editor(s) disclaim any responsibility for any injury to individuals or damage to property arising from the ideas, methods, instructions, or products mentioned in the content.