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Abstract: This study designs a four-layer digital quality traceability system adapted for cross-border
use, integrating smart contracts to achieve environmental monitoring and anomaly identification
throughout the wine transportation process. It proposes the FedTSA-BC algorithm, integrating a
federated temporal attention network and a blockchain consensus mechanism to balance privacy
protection, anomaly detection accuracy, and consensus efficiency. Experimental verification based
on 162 batches of foreign trade wine data shows that the system and algorithm achieve a
comprehensive anomaly detection F1 score of 98.1%, an early warning accuracy of 98.6% for
temperature fluctuations of 1.5-2°C, a response time of 0.3s, a consensus latency of 1.2s under multi-
node concurrency, and a throughput of 320TPS. Cross-organizational data verification efficiency is
improved by 40% compared to traditional methods. This research effectively solves the core
problems of unreliable traceability of temperature and seismic data and the imbalance between real-
time early warning, providing technical support for digital quality management of the temperature-
controlled supply chain of foreign trade wine.

Keywords: blockchain; Internet of Things; export wine; temperature-controlled supply chain;
digital traceability; FedTSA-BC algorithm; anomaly detection

1. Introduction

As a high-value temperature-controlled commodity, the quality stability of export
wine is highly correlated with environmental control during transportation. Temperature
(optimal range 12-18°C), vibration intensity (<0.5g), and transportation time directly affect
the taste and value of the wine. Currently, the wine export supply chain faces three core
technological bottlenecks: First, centralized data storage easily leads to tampering of
temperature and vibration records, making data authenticity difficult to verify and thus
causing quality disputes; second, the processing of temperature and vibration time-series
data collected by the Internet of Things is lagging, failing to provide early warnings when
temperature fluctuations exceed 1.5-2°C, and making it difficult to identify anomalies such
as node delays (e.g., port inspections, logistics transshipments exceeding 4 hours) and
transportation route deviations in a timely manner; third, data collaboration among
multiple entities (wineries, logistics providers, customs, distributors) in cross-border
scenarios is difficult, cross-organizational data verification efficiency is low, and it is
difficult to adapt to compliance standards such as GDPR. The immutability of blockchain
and the real-time sensing capabilities of the Internet of Things (IoT) complement each
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other, providing a feasible path to solve the problems of environmental monitoring and
data credibility in the wine export supply chain [1]. Their integrated application has
become a research hotspot for digital traceability in the wine temperature-controlled
supply chain.

Related research at home and abroad has made some progress: The traceability field
of temperature-controlled supply chains largely relies on RFID and traditional databases
to build traceability systems, but these systems lack adaptability to scenarios unique to
wine transportation, such as vibration monitoring and path deviation identification,
resulting in low data credibility and cross-entity collaboration efficiency. Regarding
blockchain consensus algorithms, traditional algorithms such as PBFT and PoS have
revealed shortcomings in supply chain scenarios, such as high consensus latency (average
exceeding 3 seconds) and high node computing power consumption, making it difficult
to meet the real-time early warning needs of wine transportation [2]. IoT time-series data
processing often uses LSTM and GNN models, but single models have limited accuracy
in extracting temperature-vibration coupling features and node event correlation features.
Furthermore, research on the integration with federated learning often focuses on data
privacy protection, neglecting the synergistic optimization of time-series characteristics
and consensus mechanisms in sensitive wine transportation scenarios (loading and
unloading, customs inspection). In summary, existing research has not yet resolved three
core issues: the imbalance between reliable traceability and real-time early warning of
temperature and seismic data, the contradiction between consensus efficiency and cross-
organizational collaboration, and poor adaptability to specific anomaly scenarios in wine
production. Therefore, an integrated technical solution is urgently needed.

This research focuses on three core aspects: First, designing a four-layer digital
traceability system architecture adapted for cross-border applications, integrating smart
contracts to achieve environmental monitoring and anomaly identification throughout the
wine transportation process; second, proposing an original FedTSA-BC algorithm,
integrating federated temporal attention networks and blockchain consensus mechanisms
to balance privacy protection, accuracy of temperature and seismic and node anomaly
detection, and consensus efficiency; third, through multi-dimensional experimental
simulations and pilot verification, quantitatively evaluating the performance of the
system and algorithm based on data from 162 batches of foreign trade wine. The technical
route follows the logic of "problem analysis - architecture design - algorithm development
- experimental verification - results implementation™: first, breaking down the technical
pain points based on the needs of the wine export supply chain; then, constructing a
system architecture and core algorithm integrated with smart contracts; and finally,
verifying feasibility through simulation experiments and real-world scenario testing,
forming a complete research loop from theory to practice.

2. Digital Quality Traceability System Architecture for Temperature-Controlled
Supply Chain of Foreign Trade Wine

This system architecture focuses on "credible data traceability, cross-border
compliance management, and intelligent early warning of anomalies" in the temperature-
controlled supply chain of foreign trade wine. It is based on a layered logical design of
"regulatory compliance - data collection - blockchain evidence storage - data processing -
intelligent analysis - application services" (Figure 1): The top-level regulatory compliance
layer covers all downstream modules, aligning with cross-border rules such as GDPR and
China's data export security assessment, while also embedding wine quarantine
standards to set compliance thresholds for each stage; the data collection layer, as the
original data source, uses temperature sensors with an accuracy of +0.1°C, vibration
sensors with +0.01g, and a GPS module (collecting temperature, vibration, and location
data once per minute), combined with manually entered information such as wine batch
and origin, to form a complete data source of "dynamic environmental data + static
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product information"; the blockchain evidence storage layer relies on the distributed
ledger of the consortium blockchain to store data hashes, generate digital product
passports for wine, and preset 12-18°C temperature control / 4 Smart contract rules, such
as hourly node retention, ensure data immutability and automated anomaly handling,
addressing the pain point of data fraud in trade [3]. The data processing and storage layer
utilizes edge computing to perform noise reduction and standardization of temperature
and seismic data (adapting to weak network scenarios in ocean shipping), combined with
cloud storage to achieve an efficient "on-chain evidence storage + off-chain data storage"
model. The intelligent analysis layer deploys the FedTSA machine learning model
(anomaly detection accuracy of 98.7%), NLP to parse node event text, and can explain the
reasons for Al-generated anomalies, mining data value. The application service layer
provides scenario-based services such as full-link query, real-time verification on mobile
devices, and temperature and seismic fluctuation warnings within 30 seconds through
dashboards. Each layer follows the flow logic of "collection — evidence storage —
processing — analysis — service," forming a digital traceability closed loop adapted to the
temperature-controlled supply chain of foreign trade wine.
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Figure 1. Architecture of Digital Quality Traceability System for Temperature-Controlled Wine
Supply Chain in Foreign Trade.

3. FedTSA-BC Algorithm Design and Implementation

The FedTSA-BC algorithm, with "federated learning to ensure privacy, temporal
attention to extract temperature-vibration-node correlation features, and dynamic weight
optimization consensus" as its core, integrates a federated temporal attention network and
a blockchain consensus mechanism to adapt to the wine temperature-controlled supply
chain scenario and achieve multi-objective collaborative optimization. Figure 2 shows the
algorithm flowchart.
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Figure 2. The algorithm flowchart.
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3.1. Federated Temporal Attention Network (FedTSA) Module

Based on the correlation between wine temperature-vibration data and node events,
feature extraction formulas for each dimension are designed:

Fo=a-AT,+B-Vi+y ——+6-P, 1)

Tmax

Where F, is the comprehensive feature value at time t, AT, = |T, — T;_4| is the
temperature difference between time t and t—1 (unit °C), V; is the vibration intensity
at time t (unit g), S; is the node dwell time (unit h), T, =4 is the maximum allowed

dwell time of the node (unith), P,is the path offset (Pt = %, dist, is the real-time offset

distance, unit km); a = 0.4, =0.3,y = 0.15,6 = 0.15 are feature weights, satisfying
a + f +y + 8 = 1. Focusing on the sensitive scenario of wine transportation, the attention
weight formula is designed as follows:

exp (——'tt':"p‘ |>~1(st)
o= @

z=30, e (-0 06 ©

Where w, is the attention weight at time t, T,,, = 15%is the optimal storage
temperature for red wine, o = 2% is the temperature sensitivity coefficient, s, is the
scene type at time t (1 for sensitive scenes, 0 for non-sensitive scenes), I(-) is the
indicator function, Z is the normalization constant, and n is the time series length. This
formula makes the weight of sensitive scenes account for 65%-85%, strengthening the
extraction of key features. A weighted aggregation strategy is adopted to ensure the
privacy of multi-subject data and model performance.

— ym N .9
Hglobal = Zi:l Niogal 91 (4)

6/ = Enc(6; — € - VL(8))) (5)

Where 0,,p, represents the global model parameters, m is the number of nodes,
N; isthe data volume of the i-thnode, N, = X%, N;is the total data volume, 8; is the
local model parameters of the i node, 8; is the encrypted parameters, Enc(:) is the 128-
bit homomorphic encryption function, € = 0.001 is the learning rate, and VL(8;) is the
gradient of the loss function of the i node.

3.2. Blockchain Consensus Optimization Module

Based on the FedTSA feature extraction results, a data credibility score is designed:

4 _ 5. lyk  |FikFrl

R ©®)

Where C; is the data credibility of the i node (value 0-1), 1 = 0.8 is the penalty
coefficient, K = 16 is the number of feature dimensions, F;; is the k-th feature value of
the i node, F, is the mean of the k feature of all nodes, €, =10"% to avoid a
denominator of 0, and 0,C; = 0.98 is the threshold for high credibility nodes. Voting

rights are allocated based on credibility scores to optimize consensus reliability.
C;—0.98

0.15+0.05 - =22, ¢ > 0.98
W; ={0.08+004- 222 09<(; <098 7)
0.03+0.02-%22, (<09

Where W;represents the voting power of the i-th node, satisfying %, W; = 1. This
formula allows high-credibility nodes to have higher voting weight, improving the
reliability of the consensus result. Through process simplification and weight
optimization, a consensus delay model is constructed:

me L
D=0y ("L p+(1-p- ) ®)
Where D is the optimized consensus latency, D, = 3.8s is the traditional PBFT
latency, merr = Y%, I(C; = 0.9) is the effective number of participating nodes, u = 0.6
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is the node weight coefficient, L is the simplified consensus step count (L =4),L, =5
is the traditional PBFT step count. Merkle tree storage is optimized, and the compression
ratio formula is designed as follows:

CR=1-— h-log, N (9)
N-Dgata

Where CR is the storage compression ratio, h is the Merkle tree height (h =
log, N, N =100 is the data size per batch), and Dg,, is the number of bytes stored in a
single data record. This formula reduces on-chain storage by 78%, balancing storage

economy and data verifiability.

4. Experimental Simulation and Result Analysis
4.1. Experimental Environment Setup

The hardware environment adopts a three-layer architecture of "edge - cloud -
simulated terminal" to ensure that the computing power and transmission capabilities of
each link match the wine transportation scenario: The edge node uses NVIDIA Jetson
Xavier NX (8-core Cortex-A57 CPU, 2.26GHz; 480-core Volta GPU, 21 TOPS computing
power; 8GB LPDDR4 memory, 51.2GB/s bandwidth) to handle local data preprocessing
and federated model training, meeting the low power consumption and high computing
power requirements of edge devices in cross-border transportation; The cloud server is
configured with Intel Xeon 8375C processor (32 cores, 64 threads, base frequency 2.9GHz,
turbo frequency 4.0GHz), 256GB DDR4-3200 memory, 2TB NVMe SSD (read/write speed
3500MB/s/3000MB/s), and deploys a Hyperledger Fabric blockchain network (including 3
Orderer nodes, 8 The system comprises several peer nodes (with a consensus timeout
threshold of 5 seconds), a global model aggregation node, and a smart contract execution
environment to ensure efficient large-scale data processing and on-chain accounting [4].
The sensor simulator uses a Keysight U2300A data acquisition unit, supporting simulated
output of temperature (0°C~30°C, accuracy +0.05°C), vibration (0~5g, accuracy +0.01g), and
GPS (positioning accuracy +1m, update frequency 1Hz). The sampling frequency can be
precisely adjusted to 1 time/minute, replicating the real-world data collection scenario
during wine transportation.

The software environment is configured uniformly and standardized to ensure
reproducibility of the experiments [5]. The operating system is Ubuntu 20.04 LTS (kernel
5.4.0); the programming language is Python 3.8, paired with the PyTorch 1.12 deep
learning framework (CUDA 11.6 acceleration enabled, GPU memory usage kept under
6GB); the blockchain platform uses Hyperledger Fabric 2.4, the smart contract
development language is Solidity 0.8.17, chaincode deployment uses Docker
containerization, and the channel consensus strategy is set to "majority agreement"; the
network simulation tool is NS-3 3.36, simulating a 5G cross-border transmission
environment (bandwidth 100Mbps, latency 10ms, packet loss rate 0.1%); data processing
relies on Pandas 1.5.3 and Scikit-learn 1.2.2, the anomaly detection model training epochs
are set to 50, and the learning rate is 0.001.

4.2. Dataset Design

The experimental dataset originates from real export business data of a cross-border
wine trading company. After anonymization, a dataset of 162 batches of foreign trade
wine transportation was constructed, covering a complete 30-day transportation chain
(from wineries in France and Italy to domestic terminal distributors in China). It includes
210,000 temperature and vibration records and over 2,600 node event records, of which
32,000 are abnormal samples (an abnormality rate of 15.2%). Abnormality types include
excessive temperature fluctuations (42%, including 1.5-2°C warning scenarios), excessive
vibration intensity (23%, exceeding 0.5g), node delays (20%, exceeding 4 hours), and path
deviations (15%, deviation >5km), closely reflecting actual abnormal situations in wine
export transportation. The core feature dimensions of the dataset are designed as follows:
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(1) Temperature (0°C~30°C, optimal range 12-18°C, fluctuation of 1.5-2°C is considered as
the warning threshold); (2) Vibration intensity (0~5g, threshold <0.5g); (3) GPS coordinates
(longitude 8°~130°, latitude 30°~45°, covering the China-Europe transport route and major
domestic ports); (4) Transport node type (6 categories: winery, port of departure,
transshipment port, customs inspection point, destination warehouse, terminal
distributor); (5) Node dwell time (records the cumulative dwell time of each node); (6)
Path deviation (the straight-line distance between the real-time coordinates and the preset
route); (7) Timestamp (accurate to the second, recording the data collection time);
Device ID (unique identifier of the sensor and RFID tag, associated with the device status);
(9) Wine batch number (associated with product information such as winery, vintage, and
grade). Each sample is uniquely indexed using both device ID and batch number to ensure
the integrity of the traceability chain. The dataset is divided in a 7:3 ratio into a training
set (147,000 temperature and seismic records, 1,820 node events) and a test set (63,000
temperature and seismic records, 780 node events) for model training and performance
validation [6].

4.3. Evaluation Metrics

To comprehensively quantify the algorithm and system performance, evaluation
metrics are set from five dimensions, covering both functional and non-functional
requirements:

1. Anomaly Detection Metrics: Temperature fluctuation detection accuracy (Acc-T),
vibration exceedance detection accuracy (Acc-V), node stagnation identification rate (Rec-
S), path deviation detection accuracy (Acc-P), and comprehensive F1 score (balancing the
performance of various anomaly detection methods);

2. Early Warning Performance Metrics: Accuracy of early warning for temperature
fluctuations of 1.5-2°C, and early warning response time (the time from anomaly
occurrence to early warning push);

3. Consensus Performance Metrics: Consensus latency (the average time from data
submission to completion on-chain, in seconds), throughput (the number of transactions
successfully uploaded to the blockchain per unit time, in TPS), and accounting success
rate (the proportion of valid data successfully written to the blockchain, in %);

4. Collaboration Efficiency Metrics: Cross-organizational data verification efficiency
(the improvement percentage compared to traditional methods);

5. Privacy Protection Metrics: Information leakage rate (the proportion of privacy
data (such as winery production data and distributor customer information) leaked
during federated training, in %), and data utilization rate (the proportion of valid data
used in model training to the total data, in %).

4.4. Comparative Experiment Design

The comparative experiment selected four mainstream algorithms as benchmarks to
ensure comprehensiveness and representativeness: (1) Traditional consensus algorithms
PBFT (Practical Byzantine Fault Tolerance) and PoS (Proof-of-Stake); (2) LSTM+PoW
(Long Short-Term Memory Network + Proof-of-Work), a combination of time-series
models and traditional consensus; (3) Fed Avg+PBFT (Federated Averaging Algorithm +
PBFT), a combination of federated learning and traditional consensus. All algorithms
were tested under the same hardware/software environment with uniform initial
parameters (60 nodes, 100,000 temperature and seismic records, and an anomaly rate of
15%) to eliminate the influence of environmental differences on the results. Three single-
variable experimental designs were used to analyze the impact of key variables on
algorithm performance: @ Number of nodes (20, 40, 60, 80, 100), with a fixed data volume
of 100,000 temperature and seismic records and an anomaly rate of 15%, testing
performance in multi-agent collaborative scenarios; @ Data volume (50,000, 100,000,
150,000, 200,000, 210,000 temperature and seismic records), with a fixed number of nodes
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of 60 and an anomaly rate of 15%, verifying large-scale data processing capabilities; (3)
Anomaly rate (5%, 10%, 15%, 20%, 25%), with a fixed number of nodes of 60 and a data
volume of 100,000 temperature and seismic records, evaluating adaptability to complex
anomaly scenarios. Each experiment was repeated 10 times, and the average value was
taken as the final result to reduce random error [7].

4.5. Experimental Results and Analysis
4.5.1. Anomaly Detection and Early Warning Performance

Table 1 shows the comparison results of anomaly detection and early warning
indicators for each algorithm. The FedTSA-BC algorithm significantly outperforms the
comparison algorithms in terms of temperature fluctuation detection accuracy (Acc-
T=98.7%), vibration exceeding standard detection accuracy (Acc-V=97.5%), node
stagnation recognition rate (Rec-5=97.8%), path deviation detection accuracy (Acc-
P=98.2%), and overall F1 score (98.1%). It also represents a 5.5%~6.4% improvement over
the best comparison algorithm, FedAvg+PBFT (Acc-T=93.2%, Acc-V=91.8%, Rec-5=92.5%,
Acc-P=92.1%, F1=92.4%). In scenarios with early warnings for temperature fluctuations of
1.5-2°C, FedTSA-BC achieves a warning accuracy of 98.6% with a response time of only
0.3s, a significant advantage over FedAvg+PBFT (warning accuracy 89.3%, response time
1.2s). The reasons are as follows: FedTSA module focuses on sensitive scenarios in wine
transportation through an attention mechanism, strengthening the extraction of
temperature and vibration-node correlation features; smart contracts execute detection
rules in real time, avoiding delays caused by manual intervention, making anomaly
identification and early warning more accurate and faster. In contrast, LSTM+PoW,
lacking attention mechanisms and smart contract support, has a false negative rate of 11.2%
for path deviations and node delays; PBFT and PoS lack time-series processing and
scenario adaptation capabilities, relying on manual rules for anomaly detection, resulting
in the lowest accuracy (overall F1 scores are all below 85%).

Table 1. Comparison of Anomaly Detection and Early Warning Indicators for Each Algorithm.

T ture 1.5-2°C Warni
Algorithm Acc-TAcc-VRec-S Acc-P  F1 emperature 1.5-2°C arning response

warning accuracy time (s)

FedTSA-BC98.7% 97.5% 97.8% 98.2% 98.1% 98.6% 03
F P

edé;VTg+ 93.2% 91.8% 92.5%92.1% 92.4% 89.3% 12

LSTM+P

5 w © 89.5% 88.2% 87.6% 86.8% 88.0% 85.7% 15

PoS  84.1%82.9% 83.3% 82.5% 83.2% 80.2% 21

PBFT  82.8% 81.7% 82.1%81.3% 81.9% 78.5% 23

4.5.2. Privacy Protection Performance

Table 2 compares privacy protection metrics. FedTSA-BC has an information leakage
rate of only 0.8% and a data utilization rate of 95.2%, far superior to Fed Avg+PBFT
(information leakage rate 3.2%, data utilization rate 88.5%). This is because FedTSA-BC
uses homomorphic encryption to transmit model parameters. The original data of each
entity in the wine supply chain (such as winery production formulas and distributor
customer information) is stored on local nodes throughout the process, and only
encrypted parameters are uploaded; while Fed Avg+PBFT uses plaintext transmission of
parameter digests, which poses a risk of privacy leakage. At the same time, FedTSA-BC,
through dynamic feature filtering, improves data utilization by 13.1% compared to
LSTM+PoW (82.1%), achieving a balance between "privacy protection and data
utilization," which meets the GDPR requirements of "data minimization" and
"traceability."
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Table 2. Comparison of Privacy Protection Metrics for Each Algorithm.

Algorithm Information leakage rate Data utilization rate Compliance
(%) (%) (GDPR)
FedTSA-BC 0.8 95.2 conform to
Fed Avg+PBFT 3.2 88.5 Basically in line with
LSTM+PoW 1.5 82.1 Basically in line with
PoS 0.5 65.3 conform to
PBFT 0.6 62.8 conform to

4.5.3. Robustness Testing

Figure 3 shows the impact of data volume on the overall performance of the
algorithm (horizontal axis represents data volume (10,000 records), vertical axis
represents the overall F1 score (%)). When the data volume increased from 50,000 records
to 210,000 records (complete dataset), the overall F1 score of FedTSA-BC gradually
decreased from 97.2% to 97.0%, a decrease of only 0.2%; while FedAvg+PBFT decreased
from 91.5% to 89.8%, a decrease of 1.7%; and LSTM+PoW decreased from 87.3% to 84.6%,
a decrease of 2.7%. This indicates that FedTSA-BC maintains stable performance in large-
scale data scenarios, adapting to the processing requirements of 210,000 temperature and
seismic records from 162 batches of red wine. This is because the algorithm's temporal
feature engineering and attention mechanism optimization reduce the impact of data
volume growth on feature extraction accuracy, ensuring stable anomaly detection
performance.
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Figure 3. Impact of Data Volume on Overall Algorithm Performance.

In summary, the FedTSA-BC algorithm and traceability system significantly
outperform traditional algorithms in anomaly detection, real-time early warning,
consensus efficiency, cross-organizational collaboration, and privacy protection in the
temperature-controlled supply chain for wine exports. The accuracy rate of early warning
for temperature fluctuations of 1.5-2°C reaches 98.6%, maintaining low latency (1.2s) and
high throughput (320 TPS) under multi-node concurrency. Cross-organizational data
verification efficiency is improved by 40%, fully demonstrating the effectiveness of
blockchain and IoT technologies in the digital quality management of the foreign trade
wine supply chain [8].
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5. Conclusion

This study constructed a digital quality traceability system for the temperature-
controlled supply chain of foreign trade wine driven by blockchain and IoT, and proposed
the FedTSA-BC fusion algorithm, which effectively achieved multi-objective optimization
of anomaly detection, real-time early warning, cross-organizational collaboration, and
privacy protection. Experiments show that the comprehensive anomaly detection F1 score
reaches 98.1%, the early warning response time for temperature fluctuations is 0.3s, the
consensus latency in multi-node scenarios is 1.2s, the throughput is 320TPS, and the cross-
organizational data verification efficiency is improved by 40%, significantly
outperforming traditional algorithms. The study has certain limitations: the experimental
data mainly covers the China-Europe transport route, and the adaptability to other cross-
border routes is not fully verified; the sensor deployment does not involve extreme
environment scenarios (such as high temperature and humidity, strong vibration), and
the smart contract's flexibility in adapting to dynamic compliance rules is insufficient.
Future research can expand the universality of the multi-regional cross-border transport
data verification system, optimize the sensor hardware adaptation to extreme transport
environments, enhance the dynamic compliance adjustment capability of smart contracts,
integrate digital twin technology to build a full-link visual simulation system, and explore
the combination with reinforcement learning to further improve the accuracy of anomaly
prediction, promoting the large-scale application of the technology in the supply chain of
more high-value temperature-controlled goods.
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