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Abstract: This study designs a four-layer digital quality traceability system adapted for cross-border 

use, integrating smart contracts to achieve environmental monitoring and anomaly identification 

throughout the wine transportation process. It proposes the FedTSA-BC algorithm, integrating a 

federated temporal attention network and a blockchain consensus mechanism to balance privacy 

protection, anomaly detection accuracy, and consensus efficiency. Experimental verification based 

on 162 batches of foreign trade wine data shows that the system and algorithm achieve a 

comprehensive anomaly detection F1 score of 98.1%, an early warning accuracy of 98.6% for 

temperature fluctuations of 1.5-2℃, a response time of 0.3s, a consensus latency of 1.2s under multi-

node concurrency, and a throughput of 320TPS. Cross-organizational data verification efficiency is 

improved by 40% compared to traditional methods. This research effectively solves the core 

problems of unreliable traceability of temperature and seismic data and the imbalance between real-

time early warning, providing technical support for digital quality management of the temperature-

controlled supply chain of foreign trade wine. 
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1. Introduction 

As a high-value temperature-controlled commodity, the quality stability of export 

wine is highly correlated with environmental control during transportation. Temperature 

(optimal range 12-18℃), vibration intensity (≤0.5g), and transportation time directly affect 

the taste and value of the wine. Currently, the wine export supply chain faces three core 

technological bottlenecks: First, centralized data storage easily leads to tampering of 

temperature and vibration records, making data authenticity difficult to verify and thus 

causing quality disputes; second, the processing of temperature and vibration time-series 

data collected by the Internet of Things is lagging, failing to provide early warnings when 

temperature fluctuations exceed 1.5-2℃, and making it difficult to identify anomalies such 

as node delays (e.g., port inspections, logistics transshipments exceeding 4 hours) and 

transportation route deviations in a timely manner; third, data collaboration among 

multiple entities (wineries, logistics providers, customs, distributors) in cross-border 

scenarios is difficult, cross-organizational data verification efficiency is low, and it is 

difficult to adapt to compliance standards such as GDPR. The immutability of blockchain 

and the real-time sensing capabilities of the Internet of Things (IoT) complement each 
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other, providing a feasible path to solve the problems of environmental monitoring and 

data credibility in the wine export supply chain [1]. Their integrated application has 

become a research hotspot for digital traceability in the wine temperature-controlled 

supply chain. 

Related research at home and abroad has made some progress: The traceability field 

of temperature-controlled supply chains largely relies on RFID and traditional databases 

to build traceability systems, but these systems lack adaptability to scenarios unique to 

wine transportation, such as vibration monitoring and path deviation identification, 

resulting in low data credibility and cross-entity collaboration efficiency. Regarding 

blockchain consensus algorithms, traditional algorithms such as PBFT and PoS have 

revealed shortcomings in supply chain scenarios, such as high consensus latency (average 

exceeding 3 seconds) and high node computing power consumption, making it difficult 

to meet the real-time early warning needs of wine transportation [2]. IoT time-series data 

processing often uses LSTM and GNN models, but single models have limited accuracy 

in extracting temperature-vibration coupling features and node event correlation features. 

Furthermore, research on the integration with federated learning often focuses on data 

privacy protection, neglecting the synergistic optimization of time-series characteristics 

and consensus mechanisms in sensitive wine transportation scenarios (loading and 

unloading, customs inspection). In summary, existing research has not yet resolved three 

core issues: the imbalance between reliable traceability and real-time early warning of 

temperature and seismic data, the contradiction between consensus efficiency and cross-

organizational collaboration, and poor adaptability to specific anomaly scenarios in wine 

production. Therefore, an integrated technical solution is urgently needed. 

This research focuses on three core aspects: First, designing a four-layer digital 

traceability system architecture adapted for cross-border applications, integrating smart 

contracts to achieve environmental monitoring and anomaly identification throughout the 

wine transportation process; second, proposing an original FedTSA-BC algorithm, 

integrating federated temporal attention networks and blockchain consensus mechanisms 

to balance privacy protection, accuracy of temperature and seismic and node anomaly 

detection, and consensus efficiency; third, through multi-dimensional experimental 

simulations and pilot verification, quantitatively evaluating the performance of the 

system and algorithm based on data from 162 batches of foreign trade wine. The technical 

route follows the logic of "problem analysis - architecture design - algorithm development 

- experimental verification - results implementation": first, breaking down the technical 

pain points based on the needs of the wine export supply chain; then, constructing a 

system architecture and core algorithm integrated with smart contracts; and finally, 

verifying feasibility through simulation experiments and real-world scenario testing, 

forming a complete research loop from theory to practice. 

2. Digital Quality Traceability System Architecture for Temperature-Controlled 

Supply Chain of Foreign Trade Wine 

This system architecture focuses on "credible data traceability, cross-border 

compliance management, and intelligent early warning of anomalies" in the temperature-

controlled supply chain of foreign trade wine. It is based on a layered logical design of 

"regulatory compliance - data collection - blockchain evidence storage - data processing - 

intelligent analysis - application services" (Figure 1): The top-level regulatory compliance 

layer covers all downstream modules, aligning with cross-border rules such as GDPR and 

China's data export security assessment, while also embedding wine quarantine 

standards to set compliance thresholds for each stage; the data collection layer, as the 

original data source, uses temperature sensors with an accuracy of ±0.1℃, vibration 

sensors with ±0.01g, and a GPS module (collecting temperature, vibration, and location 

data once per minute), combined with manually entered information such as wine batch 

and origin, to form a complete data source of "dynamic environmental data + static 
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product information"; the blockchain evidence storage layer relies on the distributed 

ledger of the consortium blockchain to store data hashes, generate digital product 

passports for wine, and preset 12-18℃ temperature control / 4 Smart contract rules, such 

as hourly node retention, ensure data immutability and automated anomaly handling, 

addressing the pain point of data fraud in trade [3]. The data processing and storage layer 

utilizes edge computing to perform noise reduction and standardization of temperature 

and seismic data (adapting to weak network scenarios in ocean shipping), combined with 

cloud storage to achieve an efficient "on-chain evidence storage + off-chain data storage" 

model. The intelligent analysis layer deploys the FedTSA machine learning model 

(anomaly detection accuracy of 98.7%), NLP to parse node event text, and can explain the 

reasons for AI-generated anomalies, mining data value. The application service layer 

provides scenario-based services such as full-link query, real-time verification on mobile 

devices, and temperature and seismic fluctuation warnings within 30 seconds through 

dashboards. Each layer follows the flow logic of "collection → evidence storage → 

processing → analysis → service," forming a digital traceability closed loop adapted to the 

temperature-controlled supply chain of foreign trade wine. 

 

Figure 1. Architecture of Digital Quality Traceability System for Temperature-Controlled Wine 

Supply Chain in Foreign Trade. 

3. FedTSA-BC Algorithm Design and Implementation 

The FedTSA-BC algorithm, with "federated learning to ensure privacy, temporal 

attention to extract temperature-vibration-node correlation features, and dynamic weight 

optimization consensus" as its core, integrates a federated temporal attention network and 

a blockchain consensus mechanism to adapt to the wine temperature-controlled supply 

chain scenario and achieve multi-objective collaborative optimization. Figure 2 shows the 

algorithm flowchart. 

 

Figure 2. The algorithm flowchart. 
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3.1. Federated Temporal Attention Network (FedTSA) Module 

Based on the correlation between wine temperature-vibration data and node events, 

feature extraction formulas for each dimension are designed: 

𝐹𝑡 = 𝛼 ⋅ Δ𝑇𝑡 + 𝛽 ⋅ 𝑉𝑡 + 𝛾 ⋅
𝑆𝑡

𝑇max
+ 𝛿 ⋅ 𝑃𝑡         (1) 

Where 𝐹𝑡  is the comprehensive feature value at time t, Δ𝑇𝑡 = |𝑇𝑡 − 𝑇𝑡−1|  is the 

temperature difference between time t and t − 1 (unit  ∘C), 𝑉𝑡 is the vibration intensity 

at time t (unit g), 𝑆𝑡 is the node dwell time (unit h), 𝑇max = 4  is the maximum allowed 

dwell time of the node (unit h), 𝑃𝑡is the path offset (𝑃𝑡 =
𝑑𝑖𝑠𝑡𝑡

5
, 𝑑𝑖𝑠𝑡𝑡 is the real-time offset 

distance, unit km); 𝛼 = 0.4, 𝛽 = 0.3, 𝛾 = 0.15, 𝛿 = 0.15  are feature weights, satisfying 

𝛼 + 𝛽 + 𝛾 + 𝛿 = 1. Focusing on the sensitive scenario of wine transportation, the attention 

weight formula is designed as follows: 

𝜔𝑡 =
exp (−

|𝑡𝑡−𝑇opt |

𝜎
)⋅𝐼(𝑠𝑡)

𝑍
           (2) 

𝑍 = ∑  𝑛
𝑘=1  exp (−

|𝑇𝑘−𝑇opt |

𝜎
) ⋅ 𝐼(𝑠𝑘)         (3) 

Where 𝜔𝑡  is the attention weight at time t, 𝑇𝑜𝑝𝑡 = 15% is the optimal storage 

temperature for red wine, 𝜎 = 2% is the temperature sensitivity coefficient, 𝑠𝑡  is the 

scene type at time t (1 for sensitive scenes, 0 for non-sensitive scenes), 𝐼(⋅)   is the 

indicator function, 𝑍 is the normalization constant, and 𝑛 is the time series length. This 

formula makes the weight of sensitive scenes account for 65%-85%, strengthening the 

extraction of key features. A weighted aggregation strategy is adopted to ensure the 

privacy of multi-subject data and model performance. 

𝜃global = ∑  𝑚
𝑖=1  

𝑁𝑖

𝑁total 
⋅ 𝜃𝑖

′           (4) 

𝜃𝑖
′ = Enc(𝜃𝑖 − 𝜖 ⋅ ∇𝐿(𝜃𝑖))          (5) 

Where 𝜃global  represents the global model parameters, 𝑚 is the number of nodes, 

𝑁𝑖  is the data volume of the i-th node, 𝑁total = ∑  𝑚
𝑖=1 𝑁𝑖is the total data volume, 𝜃𝑖 is the 

local model parameters of the 𝑖 node, 𝜃𝑖
′  is the encrypted parameters, Enc(⋅) is the 128-

bit homomorphic encryption function, 𝜖 = 0.001 is the learning rate, and ∇𝐿(𝜃𝑖)  is the 

gradient of the loss function of the 𝑖 node. 

3.2. Blockchain Consensus Optimization Module 

Based on the FedTSA feature extraction results, a data credibility score is designed: 

𝐶𝑖 = 1 − 𝜆 ⋅
1

𝐾
∑  𝐾
𝑘=1

|𝐹𝑖,𝑘−𝐹‾𝑘∣|

𝐹‾𝑘+𝜖0
           (6) 

Where 𝐶𝑖  is the data credibility of the i node (value 0-1), 𝜆 = 0.8  is the penalty 

coefficient, 𝐾 = 16 is the number of feature dimensions, 𝐹𝑖,𝑘 is the k-th feature value of 

the i node, 𝐹‾𝑘   is the mean of the k feature of all nodes, 𝜖0 = 10−6  to avoid a 

denominator of 0, and  0, 𝐶𝑖 ≥ 0.98 is the threshold for high credibility nodes. Voting 

rights are allocated based on credibility scores to optimize consensus reliability. 

𝑊𝑖 =

{
 
 

 
 0.15 + 0.05 ⋅

𝐶𝑖−0.98

0.02
, 𝐶𝑖 ≥ 0.98

0.08 + 0.04 ⋅
𝐶𝑖−0.9

0.08
, 0.9 ≤ 𝐶𝑖 < 0.98

0.03 + 0.02 ⋅
𝐶𝑖−0.8

0.1
, 𝐶𝑖 < 0.9

       (7) 

Where 𝑊𝑖represents the voting power of the i-th node, satisfying ∑  𝑚
𝑖=1 𝑊𝑖 = 1. This 

formula allows high-credibility nodes to have higher voting weight, improving the 

reliability of the consensus result. Through process simplification and weight 

optimization, a consensus delay model is constructed: 

𝐷 = 𝐷0 ⋅ (
𝑚𝑒𝑓𝑓

𝑚
⋅ 𝜇 + (1 − 𝜇) ⋅

𝐿

𝐿0
)         (8) 

Where 𝐷  is the optimized consensus latency, 𝐷0 = 3.8𝑠  is the traditional PBFT 

latency, 𝑚𝑒𝑓𝑓 = ∑  𝑚
𝑖=1 𝐼(𝐶𝑖 ≥ 0.9) is the effective number of participating nodes, 𝜇 = 0.6 
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is the node weight coefficient, 𝐿 is the simplified consensus step count  (𝐿 = 4), 𝐿0 = 5  

is the traditional PBFT step count. Merkle tree storage is optimized, and the compression 

ratio formula is designed as follows: 

𝐶𝑅 = 1 −
ℎ⋅log2 𝑁

𝑁⋅𝐷data 
            (9) 

Where 𝐶𝑅  is the storage compression ratio, ℎ  is the Merkle tree height ( ℎ =

log2 𝑁, 𝑁 = 100 is the data size per batch), and 𝐷data  is the number of bytes stored in a 

single data record. This formula reduces on-chain storage by 78%, balancing storage 

economy and data verifiability. 

4. Experimental Simulation and Result Analysis 

4.1. Experimental Environment Setup 

The hardware environment adopts a three-layer architecture of "edge - cloud - 

simulated terminal" to ensure that the computing power and transmission capabilities of 

each link match the wine transportation scenario: The edge node uses NVIDIA Jetson 

Xavier NX (8-core Cortex-A57 CPU, 2.26GHz; 480-core Volta GPU, 21 TOPS computing 

power; 8GB LPDDR4 memory, 51.2GB/s bandwidth) to handle local data preprocessing 

and federated model training, meeting the low power consumption and high computing 

power requirements of edge devices in cross-border transportation; The cloud server is 

configured with Intel Xeon 8375C processor (32 cores, 64 threads, base frequency 2.9GHz, 

turbo frequency 4.0GHz), 256GB DDR4-3200 memory, 2TB NVMe SSD (read/write speed 

3500MB/s/3000MB/s), and deploys a Hyperledger Fabric blockchain network (including 3 

Orderer nodes, 8 The system comprises several peer nodes (with a consensus timeout 

threshold of 5 seconds), a global model aggregation node, and a smart contract execution 

environment to ensure efficient large-scale data processing and on-chain accounting [4]. 

The sensor simulator uses a Keysight U2300A data acquisition unit, supporting simulated 

output of temperature (0℃~30℃, accuracy ±0.05℃), vibration (0~5g, accuracy ±0.01g), and 

GPS (positioning accuracy ±1m, update frequency 1Hz). The sampling frequency can be 

precisely adjusted to 1 time/minute, replicating the real-world data collection scenario 

during wine transportation. 

The software environment is configured uniformly and standardized to ensure 

reproducibility of the experiments [5]. The operating system is Ubuntu 20.04 LTS (kernel 

5.4.0); the programming language is Python 3.8, paired with the PyTorch 1.12 deep 

learning framework (CUDA 11.6 acceleration enabled, GPU memory usage kept under 

6GB); the blockchain platform uses Hyperledger Fabric 2.4, the smart contract 

development language is Solidity 0.8.17, chaincode deployment uses Docker 

containerization, and the channel consensus strategy is set to "majority agreement"; the 

network simulation tool is NS-3 3.36, simulating a 5G cross-border transmission 

environment (bandwidth 100Mbps, latency 10ms, packet loss rate 0.1%); data processing 

relies on Pandas 1.5.3 and Scikit-learn 1.2.2, the anomaly detection model training epochs 

are set to 50, and the learning rate is 0.001. 

4.2. Dataset Design 

The experimental dataset originates from real export business data of a cross-border 

wine trading company. After anonymization, a dataset of 162 batches of foreign trade 

wine transportation was constructed, covering a complete 30-day transportation chain 

(from wineries in France and Italy to domestic terminal distributors in China). It includes 

210,000 temperature and vibration records and over 2,600 node event records, of which 

32,000 are abnormal samples (an abnormality rate of 15.2%). Abnormality types include 

excessive temperature fluctuations (42%, including 1.5-2℃ warning scenarios), excessive 

vibration intensity (23%, exceeding 0.5g), node delays (20%, exceeding 4 hours), and path 

deviations (15%, deviation ≥5km), closely reflecting actual abnormal situations in wine 

export transportation. The core feature dimensions of the dataset are designed as follows: 
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① Temperature (0℃~30℃, optimal range 12-18℃, fluctuation of 1.5-2℃ is considered as 

the warning threshold); ② Vibration intensity (0~5g, threshold ≤0.5g); ③ GPS coordinates 

(longitude 8°~130°, latitude 30°~45°, covering the China-Europe transport route and major 

domestic ports); ④ Transport node type (6 categories: winery, port of departure, 

transshipment port, customs inspection point, destination warehouse, terminal 

distributor); ⑤ Node dwell time (records the cumulative dwell time of each node); ⑥ 

Path deviation (the straight-line distance between the real-time coordinates and the preset 

route); ⑦ Timestamp (accurate to the second, recording the data collection time); ⑧ 

Device ID (unique identifier of the sensor and RFID tag, associated with the device status); 

⑨ Wine batch number (associated with product information such as winery, vintage, and 

grade). Each sample is uniquely indexed using both device ID and batch number to ensure 

the integrity of the traceability chain. The dataset is divided in a 7:3 ratio into a training 

set (147,000 temperature and seismic records, 1,820 node events) and a test set (63,000 

temperature and seismic records, 780 node events) for model training and performance 

validation [6]. 

4.3. Evaluation Metrics 

To comprehensively quantify the algorithm and system performance, evaluation 

metrics are set from five dimensions, covering both functional and non-functional 

requirements: 

1. Anomaly Detection Metrics: Temperature fluctuation detection accuracy (Acc-T), 

vibration exceedance detection accuracy (Acc-V), node stagnation identification rate (Rec-

S), path deviation detection accuracy (Acc-P), and comprehensive F1 score (balancing the 

performance of various anomaly detection methods); 

2. Early Warning Performance Metrics: Accuracy of early warning for temperature 

fluctuations of 1.5-2℃, and early warning response time (the time from anomaly 

occurrence to early warning push); 

3. Consensus Performance Metrics: Consensus latency (the average time from data 

submission to completion on-chain, in seconds), throughput (the number of transactions 

successfully uploaded to the blockchain per unit time, in TPS), and accounting success 

rate (the proportion of valid data successfully written to the blockchain, in %); 

4. Collaboration Efficiency Metrics: Cross-organizational data verification efficiency 

(the improvement percentage compared to traditional methods); 

5. Privacy Protection Metrics: Information leakage rate (the proportion of privacy 

data (such as winery production data and distributor customer information) leaked 

during federated training, in %), and data utilization rate (the proportion of valid data 

used in model training to the total data, in %). 

4.4. Comparative Experiment Design 

The comparative experiment selected four mainstream algorithms as benchmarks to 

ensure comprehensiveness and representativeness: ① Traditional consensus algorithms 

PBFT (Practical Byzantine Fault Tolerance) and PoS (Proof-of-Stake); ② LSTM+PoW 

(Long Short-Term Memory Network + Proof-of-Work), a combination of time-series 

models and traditional consensus; ③ FedAvg+PBFT (Federated Averaging Algorithm + 

PBFT), a combination of federated learning and traditional consensus. All algorithms 

were tested under the same hardware/software environment with uniform initial 

parameters (60 nodes, 100,000 temperature and seismic records, and an anomaly rate of 

15%) to eliminate the influence of environmental differences on the results. Three single-

variable experimental designs were used to analyze the impact of key variables on 

algorithm performance: ① Number of nodes (20, 40, 60, 80, 100), with a fixed data volume 

of 100,000 temperature and seismic records and an anomaly rate of 15%, testing 

performance in multi-agent collaborative scenarios; ② Data volume (50,000, 100,000, 

150,000, 200,000, 210,000 temperature and seismic records), with a fixed number of nodes 
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of 60 and an anomaly rate of 15%, verifying large-scale data processing capabilities; ③ 

Anomaly rate (5%, 10%, 15%, 20%, 25%), with a fixed number of nodes of 60 and a data 

volume of 100,000 temperature and seismic records, evaluating adaptability to complex 

anomaly scenarios. Each experiment was repeated 10 times, and the average value was 

taken as the final result to reduce random error [7]. 

4.5. Experimental Results and Analysis 

4.5.1. Anomaly Detection and Early Warning Performance 

Table 1 shows the comparison results of anomaly detection and early warning 

indicators for each algorithm. The FedTSA-BC algorithm significantly outperforms the 

comparison algorithms in terms of temperature fluctuation detection accuracy (Acc-

T=98.7%), vibration exceeding standard detection accuracy (Acc-V=97.5%), node 

stagnation recognition rate (Rec-S=97.8%), path deviation detection accuracy (Acc-

P=98.2%), and overall F1 score (98.1%). It also represents a 5.5%~6.4% improvement over 

the best comparison algorithm, FedAvg+PBFT (Acc-T=93.2%, Acc-V=91.8%, Rec-S=92.5%, 

Acc-P=92.1%, F1=92.4%). In scenarios with early warnings for temperature fluctuations of 

1.5-2℃, FedTSA-BC achieves a warning accuracy of 98.6% with a response time of only 

0.3s, a significant advantage over FedAvg+PBFT (warning accuracy 89.3%, response time 

1.2s). The reasons are as follows: FedTSA module focuses on sensitive scenarios in wine 

transportation through an attention mechanism, strengthening the extraction of 

temperature and vibration-node correlation features; smart contracts execute detection 

rules in real time, avoiding delays caused by manual intervention, making anomaly 

identification and early warning more accurate and faster. In contrast, LSTM+PoW, 

lacking attention mechanisms and smart contract support, has a false negative rate of 11.2% 

for path deviations and node delays; PBFT and PoS lack time-series processing and 

scenario adaptation capabilities, relying on manual rules for anomaly detection, resulting 

in the lowest accuracy (overall F1 scores are all below 85%). 

Table 1. Comparison of Anomaly Detection and Early Warning Indicators for Each Algorithm. 

Algorithm Acc-T Acc-V Rec-S Acc-P F1  
Temperature 1.5-2℃ 

warning accuracy 

Warning response 

time (s) 

FedTSA-BC 98.7% 97.5% 97.8% 98.2% 98.1% 98.6% 0.3 

FedAvg+P

BFT 
93.2% 91.8% 92.5% 92.1% 92.4% 89.3% 1.2 

LSTM+Po

W 
89.5% 88.2% 87.6% 86.8% 88.0% 85.7% 1.5 

PoS 84.1% 82.9% 83.3% 82.5% 83.2% 80.2% 2.1 

PBFT 82.8% 81.7% 82.1% 81.3% 81.9% 78.5% 2.3 

4.5.2. Privacy Protection Performance 

Table 2 compares privacy protection metrics. FedTSA-BC has an information leakage 

rate of only 0.8% and a data utilization rate of 95.2%, far superior to FedAvg+PBFT 

(information leakage rate 3.2%, data utilization rate 88.5%). This is because FedTSA-BC 

uses homomorphic encryption to transmit model parameters. The original data of each 

entity in the wine supply chain (such as winery production formulas and distributor 

customer information) is stored on local nodes throughout the process, and only 

encrypted parameters are uploaded; while FedAvg+PBFT uses plaintext transmission of 

parameter digests, which poses a risk of privacy leakage. At the same time, FedTSA-BC, 

through dynamic feature filtering, improves data utilization by 13.1% compared to 

LSTM+PoW (82.1%), achieving a balance between "privacy protection and data 

utilization," which meets the GDPR requirements of "data minimization" and 

"traceability." 

https://cpcig-conferences.com/index.php/bssp


Bus. Soc. Sci. Proc. https://cpcig-conferences.com/index.php/bssp 

 

Vol. 4 (2025) 64  

Table 2. Comparison of Privacy Protection Metrics for Each Algorithm. 

Algorithm 
Information leakage rate 

(%) 

Data utilization rate 

(%) 

Compliance 

(GDPR) 

FedTSA-BC 0.8 95.2 conform to 

FedAvg+PBFT 3.2 88.5 Basically in line with 

LSTM+PoW 1.5 82.1 Basically in line with 

PoS 0.5 65.3 conform to 

PBFT 0.6 62.8 conform to 

4.5.3. Robustness Testing 

Figure 3 shows the impact of data volume on the overall performance of the 

algorithm (horizontal axis represents data volume (10,000 records), vertical axis 

represents the overall F1 score (%)). When the data volume increased from 50,000 records 

to 210,000 records (complete dataset), the overall F1 score of FedTSA-BC gradually 

decreased from 97.2% to 97.0%, a decrease of only 0.2%; while FedAvg+PBFT decreased 

from 91.5% to 89.8%, a decrease of 1.7%; and LSTM+PoW decreased from 87.3% to 84.6%, 

a decrease of 2.7%. This indicates that FedTSA-BC maintains stable performance in large-

scale data scenarios, adapting to the processing requirements of 210,000 temperature and 

seismic records from 162 batches of red wine. This is because the algorithm's temporal 

feature engineering and attention mechanism optimization reduce the impact of data 

volume growth on feature extraction accuracy, ensuring stable anomaly detection 

performance. 

 

Figure 3. Impact of Data Volume on Overall Algorithm Performance. 

In summary, the FedTSA-BC algorithm and traceability system significantly 

outperform traditional algorithms in anomaly detection, real-time early warning, 

consensus efficiency, cross-organizational collaboration, and privacy protection in the 

temperature-controlled supply chain for wine exports. The accuracy rate of early warning 

for temperature fluctuations of 1.5-2℃ reaches 98.6%, maintaining low latency (1.2s) and 

high throughput (320 TPS) under multi-node concurrency. Cross-organizational data 

verification efficiency is improved by 40%, fully demonstrating the effectiveness of 

blockchain and IoT technologies in the digital quality management of the foreign trade 

wine supply chain [8]. 
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5. Conclusion 

This study constructed a digital quality traceability system for the temperature-

controlled supply chain of foreign trade wine driven by blockchain and IoT, and proposed 

the FedTSA-BC fusion algorithm, which effectively achieved multi-objective optimization 

of anomaly detection, real-time early warning, cross-organizational collaboration, and 

privacy protection. Experiments show that the comprehensive anomaly detection F1 score 

reaches 98.1%, the early warning response time for temperature fluctuations is 0.3s, the 

consensus latency in multi-node scenarios is 1.2s, the throughput is 320TPS, and the cross-

organizational data verification efficiency is improved by 40%, significantly 

outperforming traditional algorithms. The study has certain limitations: the experimental 

data mainly covers the China-Europe transport route, and the adaptability to other cross-

border routes is not fully verified; the sensor deployment does not involve extreme 

environment scenarios (such as high temperature and humidity, strong vibration), and 

the smart contract's flexibility in adapting to dynamic compliance rules is insufficient. 

Future research can expand the universality of the multi-regional cross-border transport 

data verification system, optimize the sensor hardware adaptation to extreme transport 

environments, enhance the dynamic compliance adjustment capability of smart contracts, 

integrate digital twin technology to build a full-link visual simulation system, and explore 

the combination with reinforcement learning to further improve the accuracy of anomaly 

prediction, promoting the large-scale application of the technology in the supply chain of 

more high-value temperature-controlled goods. 
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