

Review

Data-Driven Strategies in Energy, Transportation, and Urban Planning: Challenges and Opportunities

Xu Liu ^{1,*}

¹ University of Wisconsin–Milwaukee, Milwaukee, WI, USA

* Correspondence: Xu Liu, University of Wisconsin–Milwaukee, Milwaukee, WI, USA

Abstract: Data-driven strategies have become essential for optimizing complex systems in energy, transportation, and urban planning. By integrating advanced machine learning techniques, real-time sensing, behavioral analytics, and multi-source data, these approaches enable predictive modeling, adaptive resource allocation, and evidence-based decision-making. Applications range from carbon-aware energy optimization and resilience planning to personalized transportation services and smart urban infrastructure management. Despite challenges such as data quality, model interpretability, and behavioral variability, the convergence of multi-modal data, optimization frameworks, and socio-behavioral insights provides a roadmap for sustainable, efficient, and resilient urban systems. This review synthesizes recent methodologies, applications, and challenges, highlighting opportunities for future research and policy development in data-driven urban and energy systems.

Keywords: data-driven strategies; urban planning; energy systems; transportation networks; multi-source data; predictive modeling

1. Introduction

In recent years, data-driven strategies have emerged as a cornerstone for optimizing complex systems across energy, transportation, and urban planning domains. The exponential growth of digital data, coupled with advancements in machine learning and artificial intelligence, has enabled the development of more efficient, adaptive, and sustainable solutions. A particularly promising approach involves leveraging sequential user behavior and advanced data augmentation techniques to enhance predictive modeling capabilities. For example, frameworks that integrate sequential behavior modeling with global unsupervised data augmentation have demonstrated significant improvements in recommendation performance in personalized systems [1]. Although originally applied in content marketing, the principles underlying such frameworks—capturing temporal dependencies and augmenting sparse datasets—can be directly extended to urban mobility and energy consumption prediction. By modeling dynamic user patterns, decision-makers can anticipate fluctuations in demand, allocate resources efficiently, and adapt systems to rapidly changing urban environments.

Equally important is the capability to acquire and process real-time environmental and spatial data. Lightweight, network-based semantic segmentation algorithms optimized for embedded platforms, such as RISC-V implementations, enable high-resolution data collection at low computational cost [2]. These algorithms allow unmanned aerial vehicles (UAVs) and other Internet-of-Things (IoT) devices to continuously monitor urban landscapes, traffic flows, and energy infrastructure. Integrating such lightweight perceptual models into urban data pipelines ensures that planners have access to current and accurate information about the physical and operational status of critical infrastructure. This real-time monitoring enhances situational awareness and supports proactive decision-making for transportation optimization,

Received: 21 September 2025

Revised: 05 October 2025

Accepted: 17 November 2025

Published: 25 November 2025

Copyright: © 2025 by the authors.

Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (<https://creativecommons.org/licenses/by/4.0/>).

energy distribution, and emergency response. In rapidly growing cities, where conventional survey methods often fail to capture dynamic changes, these methods offer scalable and timely insights into urban systems.

Understanding social and behavioral dimensions is another critical aspect of designing effective urban interventions. Advanced user clustering techniques combined with natural language processing, including BERT-based sentiment analysis, allow extraction of actionable insights from heterogeneous behavioral datasets [3]. By segmenting populations according to behavioral patterns and preferences, planners can identify latent demand for transportation services, energy resources, and public amenities. Additionally, sentiment analysis of social media and other textual data streams provides a window into public perception, satisfaction, and priorities. This integration of behavioral data with environmental and operational data allows the development of predictive models that are not only technically robust but also socially informed, leading to more equitable and responsive urban systems.

The convergence of these methodologies—sequential behavior modeling, lightweight real-time sensing, and behavioral data analytics—forms the foundation for a comprehensive, data-driven approach to urban and energy system management. By leveraging these techniques, planners can design interventions that optimize operational efficiency while accounting for user needs and preferences. Furthermore, the use of scalable algorithms and real-time data acquisition supports adaptive strategies that can respond to both anticipated and unforeseen changes in system dynamics. This holistic perspective underscores the importance of integrating technological, behavioral, and operational data in the design of next-generation urban and energy infrastructures.

In summary, data-driven strategies enable the proactive management of complex urban systems, integrating predictive modeling, real-time monitoring, and social-behavioral insights into a unified framework. The ability to combine these diverse sources of information provides significant opportunities for improving efficiency, sustainability, and responsiveness across energy, transportation, and urban planning domains. As cities continue to grow and urban environments become more interconnected, the importance of leveraging such integrated, data-centric approaches will only increase, establishing a robust foundation for subsequent discussions on methodologies, applications, and challenges.

2. Data-Driven Methodologies

2.1. Machine Learning and Recommendation Systems

Data-driven methodologies have increasingly leveraged machine learning and recommendation frameworks to extract actionable insights from large-scale urban, transportation, and energy datasets. The IMAGE framework provides a comprehensive bibliometric analysis of human mobility research, demonstrating how sequential and spatial data can be analyzed to inform transportation planning and urban design [4]. By systematically examining mobility patterns, planners can predict traffic flows, optimize route planning, and enhance public transport efficiency. These techniques highlight the importance of combining both temporal and spatial dimensions in predictive modeling to capture the dynamic nature of urban environments.

Behavioral and social factors also play a significant role in modeling urban systems. Sociological studies, such as those examining academic achievement among children in single-parent families, emphasize that demographic and social variables can act as influential predictors of system behavior [5]. Translating these insights to urban and transportation systems, factors such as household composition, commuting behavior, and socio-economic status can improve the granularity and accuracy of predictive models. Integrating social indicators with environmental and operational data allows for more equitable and human-centered planning strategies.

Moreover, graph-based modeling techniques provide a powerful mechanism to capture complex relational structures in data. Graph neural networks (GNNs), initially applied in molecular binding prediction, illustrate how relational data can be modeled to understand interactions between components [6]. In the context of urban and energy systems, GNNs can represent networks of roads, power grids, or resource distribution channels, enabling the prediction of flow dynamics, bottlenecks, and vulnerability points. The combination of sequential modeling, social-behavioral insights, and graph-based techniques forms a robust foundation for data-driven recommendation and predictive systems in urban planning and energy management.

2.2. Optimization and Resource Allocation

Efficient resource allocation is a central challenge in energy and urban planning. Optimization strategies often need to consider environmental constraints, external events, and inter-organizational coordination. For instance, under carbon quota policies, organizations can develop optimal reutilization strategies to reduce waste and maximize efficiency [7]. These approaches provide valuable lessons for energy systems, where resource allocation must balance sustainability, regulatory compliance, and operational efficiency.

Similarly, external events such as geopolitical conflicts or natural disasters can disrupt system performance, highlighting the importance of resilient and adaptive optimization frameworks [8]. For example, models that integrate scenario analysis with causal inference techniques can quantify the impacts of such events on energy and transportation networks, allowing planners to design robust contingency strategies.

Organizational behavior and trust also influence resource sharing and allocation in complex systems. Capacity-sharing models indicate that trust and reciprocity between firms significantly affect the efficiency and reliability of shared resources [9]. In urban planning, these insights can guide policies for shared mobility services, collaborative energy management, and inter-agency coordination.

To illustrate the comparative effectiveness of different optimization approaches, Table 1 summarizes key strategies, their application domains, and potential impacts on system performance. This table highlights the integration of policy constraints, external shocks, and collaborative behaviors into comprehensive allocation frameworks, demonstrating the multi-dimensional nature of optimization in energy and urban systems.

Table 1. Overview of Optimization and Resource Allocation Strategies in Urban and Energy Systems.

Strategy Category	Key Mechanism	Application Domain	Potential Impact
Carbon quota-based optimization	Resource reutilization and efficiency maximization	Energy systems	Reduced emissions, improved sustainability
Scenario analysis for resilience	Event impact modeling and contingency planning	Energy & transportation	Improved robustness against external shocks
Capacity-sharing frameworks	Trust and reciprocity-based resource allocation	Urban shared services	Enhanced reliability and collaborative efficiency

2.3. Financial and Socioeconomic Data Integration

Beyond operational and behavioral modeling, integrating financial and socioeconomic data enhances predictive and prescriptive capabilities in urban and energy planning. High-frequency financial data mechanisms provide fine-grained insights into market microstructure, demand fluctuations, and decision-making dynamics [10]. Applying these techniques to energy and transportation systems can improve short-term demand forecasting, pricing strategies, and risk assessment. For instance, analyzing real-

time consumption patterns or transportation usage can reveal temporal correlations, allowing for dynamic allocation of resources and adaptive planning strategies.

By combining environmental sensing, social-behavioral analysis, and financial data integration, planners can construct a multi-dimensional view of urban and energy systems. This holistic perspective enables the development of predictive models that account not only for technical and physical variables but also for human and economic factors. Such integrated methodologies form the backbone of modern data-driven decision-making, allowing cities and organizations to optimize performance while maintaining resilience and adaptability in the face of complex and evolving challenges.

3. Applications

3.1. Energy Systems

Data-driven strategies have become essential in optimizing energy systems, particularly in the context of sustainability and resource efficiency. Carbon quota policies provide a framework for managing energy consumption while reducing environmental impact. Optimization strategies under such policies focus on the efficient reutilization of resources, balancing operational needs with emission constraints [11]. These methods allow energy producers and urban planners to allocate resources in a way that minimizes waste, ensures regulatory compliance, and supports long-term sustainability goals.

In addition to policy-driven optimization, external events such as geopolitical conflicts, supply chain disruptions, or natural disasters can have profound effects on energy security and system resilience [12]. By integrating scenario modeling and impact assessment into energy planning, decision-makers can anticipate potential vulnerabilities and design robust contingency strategies. Such approaches ensure that energy systems remain reliable under a wide range of conditions, while simultaneously optimizing efficiency under normal operating circumstances. Together, carbon-aware optimization and resilience modeling form a comprehensive framework for modern energy management.

3.2. Transportation Systems

Urban transportation systems are inherently complex, characterized by dynamic human mobility patterns and fluctuating demand. Data-driven analysis of traffic and mobility flows provides critical insights for route optimization, congestion management, and infrastructure planning. The IMAGE framework offers a systematic approach to studying human mobility patterns through bibliometric and network-based analyses [13]. By understanding population movement trends, planners can anticipate peak demand periods, optimize public transport scheduling, and improve the allocation of shared mobility resources.

In parallel, behavioral analysis techniques, such as user clustering combined with sentiment analysis, enable more personalized transportation predictions. Segmenting users based on travel behavior and preferences allows transportation providers to tailor services, anticipate demand, and improve overall system efficiency.

To illustrate the comparative application of these approaches, Table 2 summarizes key methodologies in transportation system modeling, highlighting their data sources, analytical techniques, and practical implications. This table provides a clear overview of how different modeling frameworks can be integrated to support both operational decision-making and long-term planning.

Table 2. Key Data-Driven Approaches for Transportation System Modeling.

Methodology	Data Source	Analytical Technique	Practical Implication
IMAGE framework	Urban mobility databases	Network & bibliometric analysis	Predict population flows, plan infrastructure
User clustering & sentiment analysis	Trip records, social media data	Clustering, BERT-based NLP	Personalize services, forecast demand

3.3. Urban Planning

Data-driven methodologies also play a critical role in urban planning and smart city development. Real-time environmental and spatial sensing, enabled by lightweight UAV-based perception systems, allows for continuous monitoring of urban infrastructure. These systems can detect changes in building conditions, traffic flows, and public spaces, providing planners with timely data for maintenance and planning decisions. The low computational cost of lightweight semantic segmentation algorithms makes it feasible to deploy large-scale monitoring networks across urban areas.

In addition to physical sensing, socio-behavioral data enhances planning for community services and public amenities. Studies on social patterns, such as the impact of household composition and demographic factors, provide insight into population needs and preferences. Integrating these social indicators into urban models supports equitable and human-centered planning, ensuring that interventions address both technical and societal requirements.

Finally, organizational and collaborative mechanisms influence the efficiency of shared urban resources. Trust and reciprocity models provide a basis for managing shared facilities, such as community energy systems, transportation networks, or public amenities. By incorporating these behavioral insights, urban planners can design policies and systems that encourage cooperative use, improve resource utilization, and strengthen the resilience of shared services.

4. Challenges

4.1. Behavioral Modeling in Field Experiments

While data-driven methodologies provide substantial opportunities, they are not without significant challenges. One major issue arises in modeling human behavior in field settings. Real-world experiments, such as studies involving gig workers, highlight the inherent variability and unpredictability of human behavior. Unlike controlled laboratory experiments, field data are subject to external influences, incomplete reporting, and behavioral heterogeneity. This variability complicates the construction of predictive models, requiring robust statistical and computational approaches to handle noise and uncertainty. Furthermore, capturing temporal patterns accurately is challenging, as human behavior may shift in response to changing incentives, environmental conditions, or social interactions.

4.2. System Complexity and Interpretability

Another critical challenge involves the complexity of advanced computational systems. Hybrid frameworks, such as those combining large language models (LLMs) with specialized subsystems like CodeBERT, demonstrate impressive predictive performance but introduce difficulties in interpretability and computational efficiency. In urban and energy applications, decision-makers require models that not only perform well but also offer insights into underlying causal mechanisms. The trade-off between model complexity and transparency poses a significant hurdle for deploying such systems in real-world planning, where accountability and explainability are essential. Developing

frameworks that balance predictive power with interpretability remains a key research priority.

4.3. Data Quality and Bias in Digital Platforms

Data-driven approaches also depend heavily on the quality and reliability of input data. Digital platforms and large-scale data collection systems can suffer from inconsistencies, missing values, and biases that propagate through predictive models. For example, mobility or energy consumption datasets may overrepresent certain demographic groups while underrepresenting others, leading to skewed predictions and inequitable resource allocation. Addressing these biases requires careful preprocessing, sampling, and model validation procedures, as well as the integration of multiple data sources to improve coverage and reduce systemic errors. Without such safeguards, data-driven recommendations risk reinforcing existing inequalities and undermining decision-making.

4.4. Limitations of Market-Oriented Models

Market-oriented development and planning models present additional limitations in the context of urban and energy systems. While such models offer insights into consumer behavior and resource allocation, they may fail to capture broader social, environmental, or regulatory constraints. In particular, applying purely market-driven approaches to real estate, energy distribution, or public infrastructure can lead to suboptimal outcomes, neglecting the needs of vulnerable populations or environmental sustainability. Integrating market intelligence with policy constraints, behavioral analysis, and technical considerations is therefore essential to develop holistic and practical strategies for urban planning.

4.5. Multi-Source Data Integration and Semantic Challenges

Finally, the fusion of multi-source urban data presents both technical and semantic challenges. Modern urban and energy systems generate data from heterogeneous sources, including sensor networks, IoT devices, social media, administrative records, and financial transactions. Combining these diverse datasets requires not only compatible formats and scalable storage solutions but also semantic alignment to ensure meaningful integration. Discrepancies in units, temporal resolution, or conceptual definitions can lead to misinterpretation or conflicts between datasets. Moreover, ensuring real-time processing and integration of such data streams introduces additional computational and methodological complexity.

To provide a structured overview, Table 3 summarizes the main challenges, their sources, and potential implications for data-driven urban and energy systems. This table illustrates how behavioral, computational, data quality, market, and integration challenges collectively constrain the effectiveness of predictive and prescriptive models.

Table 3. Key Challenges in Data-Driven Urban and Energy Systems.

Challenge Category	Source / Example	Implication for System Design
Behavioral variability	Gig worker field experiments [11]	Increases uncertainty, complicates modeling
System complexity & interpretability	LLM + CodeBERT hybrid frameworks [12]	Reduces transparency, affects decision-making
Data quality & bias	Digital platform datasets [13]	Skewed predictions, inequitable resource allocation
Market-oriented model limitations	Real estate and energy market models [10]	May neglect social/environmental constraints

Multi-source data integration	Heterogeneous urban and IoT datasets [9]	Semantic mismatch, computational complexity
-------------------------------	--	---

5. Future Directions and Opportunities

The integration of data-driven methodologies into energy, transportation, and urban planning has provided unprecedented opportunities for optimizing complex systems. Building upon the foundational methods introduced earlier, future research is expected to further leverage sequential modeling, advanced sensing, and behavioral analytics. Sequential data augmentation and user behavior modeling frameworks have demonstrated the potential to capture dynamic patterns, which can be extended across urban mobility, energy consumption, and other critical domains. Real-time environmental sensing, enabled by lightweight networked algorithms, will continue to enhance situational awareness and support adaptive interventions in urban environments. Behavioral segmentation and sentiment analysis techniques further enrich the predictive capacity of planning systems by integrating human factors with technical data streams.

Machine learning and recommendation systems will continue to evolve, driven by insights from both domain-specific frameworks and cross-domain applications. Mobility modeling frameworks such as IMAGE provide comprehensive perspectives on traffic and population flows, while social and demographic data illustrate the importance of integrating human-centered variables into system models. Graph-based neural networks, initially applied in molecular prediction, offer a transferable paradigm for representing complex relational structures in energy grids, transportation networks, and urban infrastructure. These approaches collectively enable planners to model interconnected systems, identify bottlenecks, and forecast emergent patterns with higher accuracy and granularity.

Optimization and resource allocation strategies will also remain central to future developments. Carbon quota-based optimization methods provide a framework for sustainable energy planning, while scenario analysis techniques allow systems to anticipate and mitigate the impacts of external shocks such as geopolitical conflicts or supply chain disruptions. Organizational behavior and trust mechanisms are critical for enabling collaborative management of shared resources, including mobility services, energy networks, and public amenities. Integrating these diverse strategies supports resilient, efficient, and adaptive system design, accommodating both technical and social dimensions of resource allocation.

Financial and socioeconomic data integration will increasingly inform predictive models and decision-making processes. High-frequency data analysis provides insights into temporal fluctuations in consumption, demand, and market behavior, which can be applied to transportation, energy, and urban infrastructure planning. By combining financial, behavioral, and environmental data, planners can achieve a multi-dimensional understanding of system dynamics, supporting proactive and evidence-based interventions.

Applications in energy systems, transportation networks, and urban planning demonstrate the practical potential of these integrated approaches. In energy systems, carbon-aware optimization and resilience modeling address efficiency and reliability, while transportation modeling benefits from mobility analytics and behavioral segmentation to enhance service delivery. Urban planning leverages UAV-based sensing, social data, and trust-based collaboration frameworks to optimize infrastructure management, public service provision, and resource sharing. Together, these applications underscore the value of combining technological, behavioral, and operational insights for sustainable system design.

Despite these advances, challenges remain that must guide future research directions. Behavioral variability in field settings continues to complicate predictive modeling, while complex computational frameworks such as hybrid LLM-CodeBERT systems pose

interpretability and efficiency constraints. Data quality, bias, and inconsistencies in digital platforms present additional hurdles, necessitating rigorous preprocessing and integration strategies. Market-oriented planning models, though useful, may overlook social or environmental considerations, and multi-source data integration introduces both semantic and technical complexities. Addressing these challenges requires the development of more robust, transparent, and adaptive systems capable of operating under uncertainty and heterogeneity.

Looking forward, the convergence of sequential modeling, real-time sensing, behavioral analytics, optimization frameworks, and financial integration offers a pathway toward multi-modal intelligent systems. Such systems will enable planners to synthesize diverse data streams, balance competing objectives, and anticipate emergent system behaviors. In urban planning, this translates to smarter, more sustainable cities with optimized energy consumption, efficient transportation networks, and equitable public services. In energy management, predictive and adaptive frameworks can reduce waste, enhance resilience, and support low-carbon transitions. For transportation systems, integrating behavioral, mobility, and financial data will allow more accurate demand forecasting, service personalization, and infrastructure investment planning.

In conclusion, future directions in data-driven strategies emphasize cross-domain integration, multi-modal intelligence, and sustainability. By systematically addressing methodological, operational, and behavioral challenges, researchers and practitioners can unlock the full potential of data-driven systems across energy, transportation, and urban domains. The holistic combination of advanced modeling, real-time sensing, socio-economic analytics, and collaborative optimization offers a roadmap for next-generation intelligent infrastructure, providing both efficiency and resilience while promoting equitable and sustainable urban development.

6. Conclusion

Data-driven strategies have fundamentally transformed the way energy systems, transportation networks, and urban environments are designed, managed, and optimized. By leveraging advanced machine learning frameworks, real-time sensing technologies, behavioral analytics, and multi-source data integration, planners and decision-makers are able to capture the complexity and dynamism of modern urban systems. These strategies enable predictive modeling, adaptive resource allocation, and personalized service delivery, resulting in enhanced efficiency, resilience, and sustainability across multiple domains.

In energy systems, data-driven approaches facilitate carbon-aware optimization, robust contingency planning, and efficient resource reutilization, supporting low-carbon transitions and sustainable energy management. Transportation systems benefit from the integration of mobility analytics, sequential behavior modeling, and sentiment-informed predictions, which improve route planning, service personalization, and congestion management. Urban planning applications are similarly enhanced through the use of UAV-based perception, lightweight real-time monitoring, socio-behavioral insights, and collaborative mechanisms for managing shared resources. Collectively, these interventions promote smarter, more responsive, and human-centered urban environments.

Despite the evident benefits, challenges such as behavioral variability, model interpretability, data quality, and multi-source integration complexity highlight the need for continued research and innovation. Future efforts should focus on developing multi-modal intelligent systems that seamlessly combine environmental, operational, and social data to inform decision-making. Emphasis on cross-domain integration, explainability, and sustainability will be critical for ensuring that data-driven strategies not only optimize efficiency but also address societal needs and environmental constraints.

Overall, data-driven strategies represent a transformative paradigm for energy, transportation, and urban systems. By systematically harnessing diverse data streams, employing advanced analytical techniques, and addressing practical and methodological challenges, researchers and practitioners can create intelligent, adaptive, and sustainable infrastructures. These approaches offer a roadmap for the development of resilient, efficient, and equitable urban environments, paving the way for the next generation of smart cities and sustainable energy and transportation systems.

References

1. R. Luo, X. Chen, and Z. Ding, "SeqUDA-Rec: Sequential user behavior enhanced recommendation via global unsupervised data augmentation for personalized content marketing," arXiv preprint arXiv:2509.17361, 2025.
2. Y. Chen, H. Du, and Y. Zhou, "Lightweight network-based semantic segmentation for UAVs and its RISC-V implementation," *Journal of Technology Innovation and Engineering*, vol. 1, no. 2, 2025.
3. S. Li, K. Liu, and X. Chen, "A context-aware personalized recommendation framework integrating user clustering and BERT-based sentiment analysis," 2025.
4. J. Yao and T. Zhang, "Academic Achievement among African American Children in Single-Parent Families," *International Journal of Humanities and Social Science*, vol. 1, no. 2, pp. 26–38, 2025.
5. J. Jin, T. Zhu, and C. Li, "Graph neural network-based prediction framework for protein-ligand binding affinity: A case study on pediatric gastrointestinal disease targets," *Journal of Medicine and Life Sciences*, vol. 1, no. 3, pp. 136–142, 2025.
6. C. Zhang, Y. Zhang, and Z. Huang, "Optimal reutilization strategy for a shipbuilder under the carbon quota policy," *Sustainability*, vol. 15, no. 10, p. 8311, 2023.
7. Z. C. J. Yao, "Impact of the Ukraine conflict on food security: A comprehensive analysis using propensity score matching and difference in difference," *Journal of Finance Research*, vol. 8, no. 1, 2024, doi: 10.26549/jfr.v8i1.16890.
8. X. Hu and R. Caldentey, "Trust and reciprocity in firms' capacity sharing," *Manufacturing & Service Operations Management*, vol. 25, no. 4, pp. 1436–1450, 2023, doi: 10.1287/msom.2023.1203.
9. F. Zhang *et al.*, "Empowering urban energy transition through data-driven decision-making: A statistical examination of technological innovations in transportation and mobility," *Sustainable Cities and Society*, vol. 106, p. 105374, 2024.
10. X. Min, W. Chi, X. Hu, and Q. Ye, "Set a goal for yourself? A model and field experiment with gig workers," *Production and Operations Management*, vol. 33, no. 1, pp. 205–224, 2024, doi: 10.1177/10591478231224927.
11. B. Zhang, Z. Lin, and Y. Su, "Design and Implementation of Code Completion System Based on LLM and CodeBERT Hybrid Subsystem," *Journal of Computer, Signal, and System Research*, vol. 2, no. 6, pp. 49–56, 2025.
12. F. Gao, "The role of data analytics in enhancing digital platform user engagement and retention," *Journal of Media, Journalism & Communication Studies*, vol. 1, no. 1, pp. 10–17, 2025, doi: 10.71222/z27xzp64.
13. W. Sun, "Integration of market-oriented development models and marketing strategies in real estate," *European Journal of Business, Economics & Management*, vol. 1, no. 3, pp. 45–52, 2025.

Disclaimer/Publisher's Note: The views, opinions, and data expressed in all publications are solely those of the individual author(s) and contributor(s) and do not necessarily reflect the views of CPCIG-CONFERENCES and/or the editor(s). CPCIG-CONFERENCES and/or the editor(s) disclaim any responsibility for any injury to individuals or damage to property arising from the ideas, methods, instructions, or products mentioned in the content.